Yapay sinir ağları ile beyin tümörü tomografi görüntülerinin sınıflandırılması
Classification of tomographical images of brain tumors using artificial neural networks
- Tez No: 178187
- Danışmanlar: PROF.DR. OSMAN NURİ UÇAN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Biyoteknoloji, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Biotechnology, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2007
- Dil: Türkçe
- Üniversite: İstanbul Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Biyomedikal Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 88
Özet
Temel olarak tomografik görüntüleme, izdüşümlerden yararlanarak görüntü oluşturma yöntemi olarak tanımlanabilir. Son yıllarda tıbbi tanılamada sıkça kullanılan görüntüleme tekniklerinden biride tomografi görüntüleme yöntemidir. Tomografik görüntüleme yardımıyle vucüdun değişik organlarında oluşan tümörler veya diğer problemleri görmek mümkündür. Tümör, herhangi bir tipte hücrenin vücut tarafından kontrol edilememesi sonucu oluşur. Beyin tümörleri, beyin içinde büyüyen tümörler olduğundan hücre çoğalması kontrol dışı kalır. Tümör tanısı konulan birisinde tümörler, iyi ve kötü huylu olmak üzere ikiye ayrılır. Tümörler beynin kendi hücrelerinden oluşursa primer (birincil) beyin tümörleri adı verilir. Vücudun diğer sistemlerinde gelişen tümörler ise, beyne sıçrayarak (metastaz) tümör oluşturduklarından metastatik beyin tümörleri olarak adlandırılır. Bu nedenle beyin tümörleri için değişik görüntüleme yöntemleri kullanılır. Bunlardan başlıcaları; BBT (Bilgisayarlı Beyin Tomografisi), MRG (Magnetik Rezonans Görüntüleme), PET Scan (Positron Emission Tomography), DSA (Anjiografi) ve SPECT (single photon emission computed tomography) dir. Bu çalışmada, beyinde oluşan değişik tümörlerin tanılama amacıyla sınıflandırılması yapılmıştır. Sınıflandırıcı olarak son yıllarda sıkça kullanılan ve etkin bir sınıflandırma tekniği olarak bilinen Yapay Sinir Ağları kullanılmıştır. Kullanılan Yapay Sinir Ağı tipi, Hatanın Geriye Yayılması (Back-Propagation) eğitme algoritmasıdır. Bu sınıflandırıcı yardımıyla, değişik hastalara ait Bilgisayarlı Beyin Tomografilerinden alınan üç değişik tümörün görüntülerinin öznitelik vektörleri çıkarılarak başarılı bir şekilde sınıflandırılması yapılmıştır. Tezin ilk bölümünde; Tomografik görüntüleme tekniği ve yöntemlerinden bahsedilmiştir. Çalışmanın ikinci bölümünde, kullanılan Yapay Sinir Ağları (YSA) sınıflandırıcılarından bahsedilmiştir. En son bölümde ise izlenilen yöntem ve kullanılan YSA programı tanıtılarak alınan sonuçlar irdelenmiştir.
Özet (Çeviri)
Basically, tomographical imaging is known to be an image formation method using projections. Recently, one of the techniques frequently used in imaging in medical diagnosis is tomographical imaging method. It is possible to see some tumors or other problems appearing in different organs of a body using tomographical imaging. A tumor is formed when any cell can not be controlled. Since brain tumors are those growing inside the brain, the number of cells increases without control. Tumors are separated into two types: bening and malign. If the tumors are formed from the cells of the brain, they are called as primary brain tumors. The tumors developing in other systems of the body are called as metastatic brain tumors since they formed tumors by jumping to the brain (metastasize). For this reason different imaging methods are used for brain tumors. Mainly, the important ones are CBT (computerized brain tomography), MRI (magnetic resonance imaging), Pet Scan (positron emission tomography), DSA (angiography) and SPECT (single photon emission computed tomography). In this study, the classification of different tumors formed in the brain for diagnosis. As the classifier, a technique, which is frequenctly used and known as an active classification technique, artificial neural network is used. The artificial neural network type used here is error back-propagation training algorithm. Using this classifier, a active classification is achieved by extracting feautre vectors of three different tumor images obtained from computerized brain tomographies belonging different patiens. In the first part of this thesis, the tomographical imaging technique and methods are mentioned. In the second part, the artificial neural network (ANN) classifiers are mentioned. In the final part of the thesis, the method followed and ANN program used is introduced and the results are discussed
Benzer Tezler
- A hybrid deep learning metaheuristic model for diagnosis of diabetic retinopathy
Diyabetik retinopatinin tanısı için hibrit bir derin öğrenme meta-sezgisel modeli
ÖMER FARUK GÜRCAN
Doktora
İngilizce
2022
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ÖMER FARUK BEYCA
- Evrişimli sinir ağları (ESA) ile beyin tümörü tespiti
Brain tumor detection with convolutional neural networks (CNN)
ALİ GÜLSOY
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Gedik ÜniversitesiYapay Zeka Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ŞERİFE ESRA DİNÇER
DR. ÇİĞDEM GÜNDOĞAN TÜRKER
- Derin öğrenme yöntemleri kullanarak beyin tümörü teşhisi ve sınıflandırması
Brain tumor diagnosis and classification using deep learning methods
ABDULLAH SAKIN
Yüksek Lisans
Türkçe
2024
Elektrik ve Elektronik MühendisliğiTokat Gaziosmanpaşa ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. MAHMUT HEKİM
- Tıbbi görüntü işleme ile akciğer grafisinde COVID-19 pozitif tespiti için veri madenciliği ve derin öğrenme yöntemlerinin performanslarının incelenmesi
Investigation of the performance of data mining and deep learning methods for COVID-19 positive detection in lung graph with medical image processing
FATMA GÜL KURT
Yüksek Lisans
Türkçe
2022
BiyoistatistikHacettepe ÜniversitesiBiyoistatistik Ana Bilim Dalı
DOÇ. DR. JALE KARAKAYA KARABULUT
- Evrişimsel sinir ağı ve görü dönüştürücü mimarileri kullanılarak MR görüntülerinde beyin tümörlerinin otomatik sınıflandırılması
Automatic classification of brain tumors in MR images using convolutional neural network and vision transformer architectures
ÖMER MİRAÇ KÖKÇAM
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat ÜniversitesiYazılım Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUHAMMED EMRE ÇOLAK