Geri Dön

Eeg sinyallerinin analizinde performansı yüksek olan dalgacık tipinin belirlenmesi

Determination of high performance wavelet type in eeg signals analysis

  1. Tez No: 289963
  2. Yazar: MERVE YASEMEN TÜRKOĞLU
  3. Danışmanlar: YRD. DOÇ. ALİ CAFER GÜRBÜZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Mühendislik Bilimleri, Engineering Sciences
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektronik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 88

Özet

Beynin sinirsel faaliyeti sonucu elde edilen biyoelektrik işaretlere Elektroensefalogram (EEG) adı verilir. EEG sinyali, epilepsi gibi çeşitli sinir hastalıklarının teşhisi ve araştırılmasında önemli rol oynayan, beyinsel aktiviteler hakkında önemli bilgi sağlayan non invasif (yüzeyden) bir yöntemdir. EEG sinyalleri, alfa, beta, teta, delta ve gama olmak üzere 5 adet frekans bandı içeren belli bir dalga şekline sahip olmayan sinyallerdir. Spektral analiz yöntemleri ile EEG sinyallerinden bilgi çıkarılması teşhise yardımcı olmaktadır. Epileptik nöbet beyindeki hücrelerin kontrol edilemeyen, ani, aşırı ve anormal deşarjlarına bağlı olarak ortaya çıkan bir durumdur. Epilepsi nöbetleri beklenmeyen elektriksel uyarı olarak da düşünülebilir. Bu çalışmada, sağlıklı insanlara ve epilepsi hastalarına ait EEG sinyallerinin spektral analizi, EEG gibi durağan olmayan sinyallerin analizinde oldukça başarılı olması sebebiyle ayrık dalgacık yöntemi (ADD) ile yapılmıştır. Üzerinde çalışılan EEG sinyallerinin dalgacık ayrışımında ayrışım seviyesi 6 olarak alınmıştır. Ayrıntılı ve yaklaşık dalgacık katsayıları, 6 ayrıntılı ve 1 yaklaşık alt band üzerinden hesaplanmıştır. Dalgacık katsayıları EEG sinyallerini tanımlayan öznitelikleri vermektedir. EEG sinyallerinin ayrık dalgacık dönüşümü ile analizinde Daubechies, Coiflet, Symmlet, ayrık Meyer gibi farklı dalgacık tipleri kullanılmıştır. Bu analizlerde epileptik EEG sinyallerinin tespitinde herbir dalgacığın başarı oranı değişim göstermektedir. Çalışmanın sonucunda yapılan analizler ile elde edilen bulgulara göre en iyi performansı gösteren dalgacık tipi ve derecesi belirlenmeye çalışılmıştır. Sonuç olarak sağlıklı ve epileptik EEG kayıtları arasındaki ayrımı en iyi gösteren dalgacık tipi Daubechies ve derecesi 44 olarak bulunmuştur. Dalgacık katsayılarını belirlemek ve bu katsayıların çeşitli istatiksel hesaplamalarını yapmak için Matlab yazılımı kullanılmıştır.

Özet (Çeviri)

Bioelectrical signs, which are the results of the brain neural activity, are called Electroencephalogram (EEG). EEG signals play an important role in the diagnosis and study of many nervous diseases such as epilepsy. EEG signals, which provide important information about brain activity is also a non-invasive method. EEG signals, who do not have a specific waveforms, containing five frequency bands. These bands are called as alpha, beta, theta, delta and gamma. Spectral analysis of EEG signals help to extract information to diagnose diseases. Epileptic seizure is a situation that occurs depending on the sudden, excessive and abnormal discharge arise of brain cells can not be controlled. Epileptic seizures may be considered as an unexpected electrical impulse. In this study, discrete wavelet transform (DWT) was used for spectral analysis of EEG signals belonging to the epilepsy patients and healthy people due to the success of the DWT method in analysis of non-stationary signals like EEG. Wavelet decomposition level was set to 6 for this study. Detailed and approximate wavelet coefficients were calculated based on the six detailed and one approximate sub-bands. The attributes that define the EEG signal is given by the wavelet coefficients. Different wavelet types such as Daubechies, Coiflet, Symmlet and discrete Meyer were used in EEG signal analysis with the discrete wavelet transform. These analyses showed that every single wavelet and different degrees of the wavelets give changing results. According to the results, the type and the degree of the best performing wavelet is determined. Consequently, the analysis results have shown that Daubechies has been type of best performing wavelet and 44 has been it?s degree. Determination of the wavelet coefficients, and various statistical calculations of wavelet coefficients were made with Matlab software.

Benzer Tezler

  1. EEG sinyallerinin dalgacık dönüşümü ve ortak vektör yaklaşımı ile sınıflandırılması

    EEG signals classification with wavelet transforms and common vector aproach

    HATİCE PINAR ÜNAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Mekatronik MühendisliğiMarmara Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. GÖKHAN GÖKMEN

    DR. MEHMET YUMURTACI

  2. Biyonik el kontrolü için EMG işaretlerininin makine öğrenmesi yöntemiyle sınıflandırılması

    Wavelet transformation and classification with machine learning methods of electromyography signals for bionic hand control

    DUYGU BAĞCI

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYalova Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. OSMAN HİLMİ KOÇAL

  3. Tsallis entropy based feature extraction from insole force sensor data to diagnose vestibular system disorders

    Vestibüler sistem bozukluklarının tanısı için tabanlık kuvvet algılayıcıları verilerinden tsallis entropisi tabanlı öznitelik çıkarımı

    HARUN YAŞAR KÖSE

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERHAT İKİZOĞLU

  4. EEG sinyallerinin sınıflandırılmasında kuantum tabanlı karar destek sisteminin gerçekleştirilmesi

    Implementation of a quantum-based decision support system for classification of EEG signals

    GAMZEPELİN AKSOY

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT KARABATAK

  5. Eeg sinyallerinin epilepsi durumunun model-tabanlı spektral analiz teknikleri ile belirlenmesi

    Determination of epileptic eeg signals by model-based spectral analysis techniques

    SABAHAT DURAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Mühendislik BilimleriTOBB Ekonomi ve Teknoloji Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ALİ CAFER GÜRBÜZ