Anomalous network packet detection
Anomal ağ paketi tespiti
- Tez No: 395533
- Danışmanlar: YRD. DOÇ. DR. SİBEL TARIYAN ÖZYER
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: İngilizce
- Üniversite: Çankaya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 76
Özet
Geçen on yıllık dönemde anomal ağ paketlerinin Saldırı Tespit Sistemlerini (STS) iyileştirmek amacıyla yoğun araştırmalar yapılmıştır. İki türden STS mevcuttur. Birincisi imzaya dayalı tespit sistemidir. Bu sistem, ağ paketlerini tarayarak ve bunları önceden gözlemlenen saldırılara karşı, insan kaynaklı imzalarla karşılaştırarak saldırıları tespit edebilmektedir. İkinci tip, gözlemlenen ataklara karşı yeni saldırıları tespit edebilen, anomaliye dayalı tespit sistemidir. Bu tezde, anomaliye dayalı tespit sistemi, yoğunluk tabanlı kümeleme algoritma ve teknikleri ile kullanılmıştır. DBSCAN (Yoğunluk Tabanlı Uzaysal Kümeleme ve Gürültülü Veride Uygulaması) ve DenStream algoritmaları veri madenciliğinde iyi bilinen yoğunluk kümeleme algoritmalarıdır. DBSCAN algoritması, paketleri normal ve gürültülü veri olarak ayrıştırabilir; ikinci algoritma, DenStream, DBSCAN ile başlar ve sonra kümelenecek gürültü miktarını azaltmaya çalışır. Bu çalışma için DARPA'99 veri seti kullanılmıştır. R2L, U2R, DoS ve Probe atak tipleri ile çalışılmıştır. DBSCAN ve DenStream algoritmaları ince ayar ile uygulanmıştır. Performans ve etkinliğe göre, DenStream algoritması, DBSCAN algoritmasından daha yüksek tespit sonuçları ve hassasiyet elde etmiştir. Daha sonra yalnızca epsilon uzaklık ve en az nokta sayısı parametreleri komşu alan için ince ayarlanarak; kümeleme yöntemleri, saldırı tipinden bağımsız, normal ve gürültülü veri sınıflandırma için kolaylıkla uygulanabilmektedir.
Özet (Çeviri)
In the last decade, extensive research has been done to the improvement of Intrusion Detection Systems (IDS) for anomalous network packets. Two types of IDS are available. The first one is the signature-based detection system. It can detect intrusions by scanning network packets and compare them with human-generated signatures against previously observed attacks. The second type is the anomaly-based detection system, which is able to detect new attacks against observed attacks. In this thesis, anomaly-based detection systems have been used with density base clustering algorithms and techniques. DBSCAN (Density-Based Spatial Clustering and Application with Noise) and DenStream algorithms are well-known data stream clustering algorithms in data mining. DBSCAN algorithm can separate packets as normal and noisy data. The second algorithm, DenStream starts off with DBSCAN and then tries to reduce the amount of noise to be clustered. For this study, we used DARPA' 99 dataset. We worked with attacks of type R2L, U2R, DoS and Probe. The DenStream and DBSCAN algorithms have been performed with fine-tuned. Overall, the DenStream algorithm achieved higher detection results and sensitivity than the DBSCAN algorithm. After, only epsilon distance and minimum number of points parameters for neighborhood area are fine-tuned, the clustering methods can be easily applied for classifying normal and noisy data regardless of its attack type.
Benzer Tezler
- Detection of anomalous fund transfers between different banks
Farklı bankalar arası anormal fon transferlernin ̇tespiti
ABDULLAH MERT TUNÇAY
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiModelleme ve Simülasyon Ana Bilim Dalı
DOÇ. DR. ERDEM AKAGÜNDÜZ
- Anomaly detection using network traffic characterization
Ağ trafiği karakteristiğini kullanarak anomali tespiti
OĞUZ YARIMTEPE
Yüksek Lisans
İngilizce
2009
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİzmir Yüksek Teknoloji EnstitüsüBilgisayar Yazılımı Ana Bilim Dalı
YRD. DOÇ. DR. TUĞKAN TUĞLULAR
- Machine learning based DDOS attack detection for software-defined networks
Yazılım tanımlı ağlar için makine öğrenme esaslı DDOS attack algılama
DOUGLAS OMURO MAKORI
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
Assist. Prof. Dr. SEÇKİN ARI
- Güvenlik duvarı kurallarındaki tutarsızlıklarınbelirlenmesi için yeni bir yöntem
A new method for intra-firewall anomaly discovery
BÜŞRA ÇAYÖREN
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilişim Uygulamaları Ana Bilim Dalı
DOÇ. DR. ENVER ÖZDEMİR
- Machine learning approach for external fraud detection
Dış saldırıların belirlenmesi için makine öğrenimi yaklaşımı
AJI MUBALAIKE
Yüksek Lisans
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilişim Uygulamaları Ana Bilim Dalı
PROF. DR. ERTUĞRUL KARAÇUHA
PROF. DR. EŞREF ADALI