Geri Dön

Evaluating effects of denoising and feature extraction methods on classification of EMG signals

Başlık çevirisi mevcut değil.

  1. Tez No: 401367
  2. Yazar: ERCAN GÖKGÖZ
  3. Danışmanlar: PROF. DR. ABDULHAMİT SUBAŞI
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Electromyography (EMG), Motor unit action potentials (MUAPs), Multiscale Principle Component Analysis (MSPCA), ARburg (AR), Covariance (COV), Multivariate Covariance (MCOV), Eigen value, Multiple Signal Classification (MUSIC), discrete wavelet transform(DWT) and classifiers such as k-Nearest Neighbor (k-NN), Artificial neural network (ANN), Radial Basis Function (RBF), Support vector machine (SVM), Classification and Regression Trees (CART), C4.5 and Random Forest
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: International Burch University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 179

Özet

Özet yok.

Özet (Çeviri)

Machine Learning techniques and algorithms are extensively using in biomedical signal processing field to produce diagnosis system for definition of neuromuscular diseases. Different approaches have been applied for quantitative analysis of biomedical signals. Electromyography (EMG) biomedical signal data is used in this study to define neuromuscular diseases which consist of electrical currents from muscles during its contraction. Motor Unit Action Potentials (MUAPs) in EMG signals provides an important source of information for the diagnosis of neuromuscular disorders. This study shows how machine learning techniques are used for detection of neuromuscular diseases. EMG signals were recorded under usual and real conditions for quantitative analysis. The EMG signals were recorded from five places in the muscle at three levels of insertion. The dataset consist of control, a group of patients with Myopathy and Amyotrophic Lateral Sclerosis (ALS) data. EMG signals contain noise while traveling on different tissues. Moreover, the EMG signal acquisition collects signals from motor units at a time which may be effected by different signals. Numerous feature extraction and denoising methods applied to remove noise from signal and to extract features from signal. Feature extraction methods such as Autoregressive (AR) Burg, covariance (COV), multivariate covariance (MCOV), Eigen value, Multiple Signal Classification (MUSIC), discrete wavelet transform (DWT) and classifiers such as k-Nearest Neighbor (k-NN), Artificial neural network (ANN), Radial Basis Function (RBF), Support vector machine (SVM), Regression Trees (CART), C4.5 and Random Forest classifiers are utilized in this study. Multiscale Principal Component Analysis (MSPCA) denoising method applied to remove noise from EMG signal. The effect of the MSPCA denoising and feature extraction methods is discussed on EMG signal classification by applying different classifiers. The comparisons between the developed classifiers were based on a number of scalar performances such as sensitivity, specificity, accuracy, F-measure and area under ROC curve (AUC). The results show that MSPCA de-noising has considerably increased the accuracy as compared to EMG data without MSPCA de-noising. Combination of DWT feature extraction and Random Forest achieved best performance for k-fold cross validation with 96.67% total classification accuracy. These results demonstrate that the presented framework have the potential to achieve a reliable classification of EMG signals, and to support the clinicians for making an accurate diagnosis of neuromuscular disorders.

Benzer Tezler

  1. Öz bilgi destekli derin öğrenme yaklaşımları ile hsg gürültü giderme

    Self-ınformation empowered deep learning approaches for hsı denoising

    ORHAN TORUN

    Doktora

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiHacettepe Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SENİHA ESEN YÜKSEL ERDEM

    PROF. DR. MEHMET ERKUT ERDEM

  2. Dijital görüntü işleme teknikleri kullanılarak görüntülerden detay çıkarımı

    Feature extraction from images by using digital image processing techniques

    GÜZİDE MİRAY PERİHANOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    ÖĞR. GÖR. MEHMET UFUK ÖZERMAN

  3. Noise removal from the image using convolutional neural networks-based denoising auto encoder

    Görüntüden gürültünün kaldırılması: Konvolüsyonel sinir ağları tabanlı gürültü azaltıcı otokodlayıcı

    YOUNUS FAROOQ FAEQ CHAWARASH

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankırı Karatekin Üniversitesi

    Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERKAN SAVAŞ

  4. Ultrason görüntülerinin derin öğrenme yöntemiyle iyileştirilmesi

    Enhancement of ultrasound images by deep learning

    ONUR KARAOĞLU

    Doktora

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiKarabük Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. İHSAN ULUER

  5. Denetimsiz derin öğrenme kullanılarak dijital meme tomosentezi görüntülerinde bulanıklığın giderilmesi

    Unsupervised deblurring of digital breast tomosynthesis images using deep learning

    MÜBERRA AYDIN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İSA YILDIRIM