Identifying extract class and extract method refactoring opportunities through analysis of variable declarations and uses
Başlık çevirisi mevcut değil.
- Tez No: 401541
- Danışmanlar: DR. DANIŞMAN YOK
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: İngilizce
- Üniversite: Syracuse University
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 152
Özet
Özet yok.
Özet (Çeviri)
For small software systems, with perhaps a few thousand lines of code, software structure is largely an esthetic issue. When software systems grow large, including perhaps a million or more lines of source code, their structures become much more important. Developing a large system requires teams of developers working in concert to provide a finished product in a reasonable amount of time. That means that many people will read each component to use, test or modify towards accomplishing new features. In the software development life cycle, the maintenance phase is a dominant stage that impacts production cost of the system dramatically. This is mainly because, for a successful system, the maintenance phase lasts until the system's retirement and includes crucial operations such as enhancing performance, fixing newly discovered bugs and adopting/expending the software to meet new user requirements. Moreover, a software component may be modified or fixed by someone who is not the original author of that component. In this case, all the operations conducted during maintenance or initial development may lead to insertion of code into a unit that may be unrelated to the original design concept of that unit. As software systems become large and complex they grow too long to read and understand completely by a single person. After their initial implementations, maintenance operations tend to make the system even less maintainable, increasing the time and effort needed for future maintenance. In this research, we are interested in finding ways to successfully detect code defects and propose solutions to increase the overall maintainability of software systems that are larger than any one person can completely comprehend from its code alone. This process of refactoring software impacts the total production cost of the system positively by improving the quality of software code such as its comprehensibility and readability. To reduce the total development cost for a system, we suggest three main re-factorings. These novel forms of refactoring techniques aim to eliminate code defects such as large classes and long methods. The main goal of these re-factorings is to create smaller and cohesive software units with clear intentions to improve the maintainability of software. We provide analysis and visualization tools to help a user identify candidate code fragments to be extracted as separate unites. With these automation tools, developers do not have to manually inspect a foreign code base to detect possible refactoring opportunities. Through the visual representations we provide, one can observe all suggested re-factorings effectively on large scale software systems and decide whether a particular refactoring needs to be applied. To show the effectiveness of our techniques, we also provide some experiments conducted using these tools and techniques both on our own project's source code and other open-source projects.
Benzer Tezler
- A composed technical debt identification methodology to predict software vulnerabilities
Yazılım zafiyetlerini tahmin etmek için kapsamlı bir teknik borç tanımlama yöntemi
RUŞEN HALEPMOLLASI
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. AYŞE TOSUN KÜHN
- Derin öğrenme ağları kullanılarak 3B tıbbi görüntü tanımlanması
3D medical image recognition using deep learning networks
ROUBA OMAR ALAHMAD ALOSMAN
Yüksek Lisans
Türkçe
2023
Mühendislik BilimleriSakarya ÜniversitesiBilişim Sistemleri Mühendisliği Ana Bilim Dalı
PROF. DR. İSMAİL HAKKI CEDİMOĞLU
- Elektrikli araç motorlarında mekanik arızaların derin öğrenme ile tespiti için yeni bir yöntemin geliştirilmesi
Development of a new method for the detection of mechanical faults in electric vehicle motors with deep learning
EYUP SÖNMEZ
Doktora
Türkçe
2024
Mekatronik MühendisliğiSakarya Uygulamalı Bilimler ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
PROF. DR. SEZGİN KAÇAR
- Discovering market insights from online product reviews through sentiment analysis
Çevrimiçi müşteri yorumları ile duygu analizi ve pazar payı için bir içgörü aracı
MUHAMMET ALİ KADIOĞLU
Yüksek Lisans
İngilizce
2022
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ERKAN IŞIKLI
- Makine öğrenmesi yöntemleri ile el ve yüz analizi tahminlemesi
Hand and face analysis prediction with machine learning methods
HÜSNEİREM KAYA
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ KAYHAN AYAR