Fisher kernel based models for image classification and object localization
Başlık çevirisi mevcut değil.
- Tez No: 401572
- Danışmanlar: DR. CORDELIA SCHMID, DR. JAKOB VERBEEK
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: İngilizce
- Üniversite: Université de Grenoble
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 181
Özet
Özet yok.
Özet (Çeviri)
In this dissertation, we propose models and methods targeting image understanding tasks. In particular, we focus on Fisher kernel based approaches for the image classification and object localization problems. We group our studies into the following three main chapters. First, we propose novel image descriptors based on non-i.i.d. image models. Our starting point is the observation that local image regions are implicitly assumed to be identically and independently distributed (i.i.d.) in the bag-of-words (BoW) model. We introduce non-i.i.d. models by treating the parameters of the BoW model as latent variables, which renders all local regions dependent. Using the Fisher kernel framework we encode an image by the gradient of the data loglikelihood with respect to model hyper-parameters. Our representation naturally involves discounting transformations, providing an explanation of why such transformations have proven successful. Using variational inference we extend the basic model to include Gaussian mixtures over local descriptors, and latent topic models to capture the co-occurrence structure of visual words. Second, we present an object detection system based on the high-dimensional Fisher vectors image representation. For computational and storage efficiency, we use a recent segmentation-based method to generate class-independent object detection hypotheses, in combination with data compression techniques. Our main contribution is a method to produce tentative object segmentation masks to suppress background clutter in the features. We show that re-weighting the local image features based on these masks improve object detection performance significantly. Third, we propose a weakly supervised object localization approach. Standard supervised training of object detectors requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning, which requires only binary class labels that indicate the absence/ presence of object instances. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from prematurely locking onto erroneous object locations. We show that this procedure is particularly important when high-dimensional representations, such as the Fisher vectors, are used. Finally, in the appendix of the thesis, we present our work on person identification in uncontrolled TV videos. We show that cast-specific distance metrics can be learned without labeling any training examples by utilizing face pairs within tracks and across temporally-overlapping tracks. We show that the obtained metrics improve face-track identification, recognition and clustering performances. Keywords Image classification, object detection, weakly supervised training, computer vision, machine learning.
Benzer Tezler
- Open-set object recognition
Açık-set nesne tanıma
SALMAN MOHAMMAD
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SHERVIN RAHIMZADEH ARASHLOO
- Avuç izine dayalı kimliklendirme sistemlerinde kısıtlamasız aya örüntüsü çıkarımı ve uygulaması
Unrestricted palm pattern selection and implementation on palmprint based identification systems
ELİF BAYKAL
Yüksek Lisans
Türkçe
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKaradeniz Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. MURAT EKİNCİ
- Esnek kullanımlı avuç izi bölgesine dayalı doğrulama sistemlerinin tasarım çalışması
A comprehensive study on flexible palmprint verification system design
MURAT AYKUT
Doktora
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKaradeniz Teknik ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
DOÇ. MURAT EKİNCİ
- Vision based sign language recognition: Modeling and recognizing isolated signs with manual and non-manual components
Video tabanlı işaret dili tanıma: El ve el dışı hareketler içeren ayrık işaretlerin modellenmesi ve tanınması
OYA ARAN
Doktora
İngilizce
2008
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiBilgisayar Mühendisliği Bölümü
PROF. LALE AKARUN
- A comparison of subspace based face recgnition methods
Alt-uzay tabanlı yüz tanıma yöntemlerinin karşılaştırılması
ÖZKAN GÖNDER
Yüksek Lisans
İngilizce
2004
Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. UĞUR HALICI