Geri Dön

Acoustic event classification using deep neural networks

Başlık çevirisi mevcut değil.

  1. Tez No: 401643
  2. Yazar: OĞUZHAN GENÇOĞLU
  3. Danışmanlar: PROF. TUOMAS VIRTANEN, DR. HEIKKI HUTTUNEN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgi ve Belge Yönetimi, Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Information and Records Management, Computer Engineering and Computer Science and Control, Science and Technology
  6. Anahtar Kelimeler: acoustic event classification, artificial neural networks, audio information retrieval, deep neural networks, deep belief networks, pattern recognition
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: Tampereen Teknillinen Yliopisto (Tampere University of Technology)
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Bilişim Teknolojileri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 69

Özet

Özet yok.

Özet (Çeviri)

Audio information retrieval has been a popular research subject over the last decades and being a subfield of this area, acoustic event classification has a considerable amount of share in the research. In this thesis, acoustic event classification using deep neural networks is investigated. Neural networks have been used in several pattern recognition (both function approximation and classification) tasks. Due to their stacked, layer-wise structure they have been proved to model highly nonlinear relations between inputs and outputs of a system with high performance. Even though several works imply an advantage of deeper networks over shallow ones in terms of recognition performance, advancements in training deep architectures were encountered only recently. These methods excel conventional methods such as HMMs and GMMs in terms of acoustic event classification performance. In this thesis, effects of several NN classifier parameters such as number of hidden layers, number of units in hidden layers, batch size, learning rate etc. on classification accuracy are examined. Effects of implementation parameters such as types of features, number of adjacent frames, number of most energetic frames etc. are also investigated. A classification accuracy of 61.1% has been achieved with certain parameter values. In the case of DBNs, An application of greedy, layer-wise, unsupervised training before standard supervised training in order to initialize network weights in a better way, provided a 2-4% improvement in classification performance. A NN that had randomly initialized weights before supervised training was shown to be considerably powerful in terms of acoustic event classification tasks compared to conventional methods. DBNs have provided even better classification accuracies and justified its significant potential for further research on the topic.

Benzer Tezler

  1. Türk müzik türlerinin evrişimli sinir ağları ile sınıflandırması

    Turkish music genres classification using convolutional neural network

    SHAHAD BASSAM HAZIM

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYalova Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MURAT OKKALIOĞLU

  2. Ses olayı tanıma ve akustik sahne geri getirimi

    Sound event recognition and acoustic scenes retrieval

    AHMET MELİH BAŞBUĞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBaşkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSTAFA SERT

  3. Akustik özellikler kullanan müzik öneri sistemi

    Music recommendation system using acoustic features

    AHMET ELBİR

    Doktora

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. NİZAMETTİN AYDIN

  4. Gömülü sistemlerde sesli komut tanıma

    Voice command recognation in embedded systems

    CAN ÇETİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MUSTAFA DOĞAN

  5. Convolutional neural network based partial discharge pattern classification of medium voltage cable terminations

    Orta gerilim kablo başlıklarında evrişimli sinir ağları ile kısmi boşalma örüntü sınıflandırılması

    HALİL İBRAHİM ÜÇKOL

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYDOĞAN ÖZDEMİR