Geri Dön

A multivariate time-frequency based phase synchrony measure and applications to dynamic brain network analysis

Başlık çevirisi mevcut değil.

  1. Tez No: 401680
  2. Yazar: ALİ YENER MUTLU
  3. Danışmanlar: DR. DANIŞMAN YOK
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: İngilizce
  9. Üniversite: Michigan State University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 167

Özet

Özet yok.

Özet (Çeviri)

Irregular, non-stationary, and noisy multichannel data are abound in many fields of research. Observations of multichannel data in nature include changes in weather, the dynamics of satellites in the solar system, the time evolution of the magnetic field of celestial bodies, population growth in ecology and the dynamics of the action potentials in neurons [1, 2]. One particular application of interest is the functional integration of neuronal networks in the human brain. Human brain is known to be one of the most complex biological systems and quantifying functional neural coordination in the brain is a fundamental problem. It has been recently proposed that networks of highly nonlinear and non-stationary reciprocal interactions are the key features of functional integration. Among many linear and nonlinear measures of dependency, time-varying phase synchrony has been proposed as a promising measure of connectivity. Current state-of-the-art in time-varying phase estimation uses either the Hilbert transform or the complex wavelet transform of the signals [3]. Both of these methods have some major drawbacks such as the assumption that the signals are narrowband for the Hilbert transform and the non-uniform time-frequency resolution inherent to the wavelet analysis. Furthermore, the current phase synchrony measures are limited to quantifying bivariate relationships and do not reveal any information about multivariate synchronization patterns which are important for understanding the underlying oscillatory networks. In this dissertation, a new phase estimation method based on the Rihaczek distribution and Reduced Interference Rihaczek distribution belonging to Cohen's class is proposed. These distributions offer phase estimates with uniformly high time-frequency resolution which can be used for defining time and frequency dependent phase synchrony within the same frequency band as well as across different frequency bands. Properties of the phase estimator and the corresponding phase synchrony measure are evaluated both analytically and through simulations showing the effectiveness of the new measures compared to existing ones. The proposed distribution is then extended to quantify the cross-frequency phase synchronization between two signals across different frequencies. In addition, a cross frequency-spectral lag distribution is introduced to quantify the amount of amplitude modulation between signals. Furthermore, the notion of bivariate synchrony is extended to multivariate synchronization to quantify the relationships within and across groups of signals. Measures of multiple correlation and complexity are used as well as a more direct multivariate synchronization measure, 'Hyperspherical Phase Synchrony', is proposed. This new measure is based on computing pairwise phase differences to create a multidimensional phase difference vector and mapping this vector to a high dimensional space. Hyperspherical phase synchrony offers lower computational complexity and is more robust to noise compared to the existing measures. Finally, a subspace analysis framework is proposed for studying timevarying evolution of functional brain connectivity. The proposed approach identifies event intervals accounting for the underlying neurophysiological events and extracts key graphs for describing the particular intervals with minimal redundancy. Results from the application to EEG data indicate the effectiveness of the proposed framework in determining the event intervals and summarizing brain activity with a few number of representative graphs.

Benzer Tezler

  1. Esansiyel trombositemi ve primer miyelofibrozis olgularında ASXL1, IDH1, IDH2 gen mutasyonları ve JAK2V617F allel yükü ile klinik seyir arasındaki ilişki

    Impact of ASXL1, IDH1, IDH2 mutations and JAK2V617F allele burden in essential thrombocythemia and primary myelofibrosis on clinical course

    İPEK YÖNAL

    Tıpta Uzmanlık

    Türkçe

    Türkçe

    2013

    Hematolojiİstanbul Üniversitesi

    İç Hastalıkları Ana Bilim Dalı

    PROF. DR. FATMA DENİZ SARGIN

  2. Catchment scaled drought analysis: Integrated climate and hydrological perspectives

    Havza ölçeğinde kuraklık analizi: Entegre iklim ve hidrolojik perspektifleri

    SAEED VAZIFEHKHAH

    Doktora

    İngilizce

    İngilizce

    2018

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ERCAN KAHYA

  3. Çok fazlı yükseltici tip dc-dc dönüştürücüler için dışbükey optimizasyon kullanılarak sabit dereceli gürbüz h∞ kontrolcü sentezi

    Robust fixed order h∞ controller synthesis using convex optimization for dc-dc multi phase boost converters

    RIDVAN KESKİN

    Doktora

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik MühendisliğiZonguldak Bülent Ecevit Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İBRAHİM ALIŞKAN

    DR. ERSİN DAŞ

  4. Sincap kafesli asenkron makinenin rotor alan yönlendirmeli kontrolü

    Rotor field-orientation control of a squirrel cage induction machine

    SAFFET ALTAY

    Yüksek Lisans

    Türkçe

    Türkçe

    1995

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. M. EMİN TACER

  5. Determination of parameter regions for diagonal dominance and stability of MIMO systems

    MIMO sistemlerin köşegen baskınlığı ve kararlılığı için parametre bölgelerinin belirlenmesi

    İLHAN MUTLU

    Doktora

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET TURAN SÖYLEMEZ