A highly accurate technique for the prediction of protein structural classes
Başlık çevirisi mevcut değil.
- Tez No: 402747
- Danışmanlar: PROF. DR. MEHMET CAN
- Tez Türü: Doktora
- Konular: Biyomühendislik, Genetik, Bioengineering, Genetics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: İngilizce
- Üniversite: International University of Sarajevo
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 191
Özet
Özet yok.
Özet (Çeviri)
Structural classes of proteins play an important role in the estimation of tertiary structures and functions of proteins. The number of protein sequence and structurally analyzed proteins in the databank are increasing rapidly due to the developments in biotechnology. However, the number of manually classified proteins is low comparing to structurally analyzed proteins and protein sequences. Also, proteins with unknown structures cannot be classified by structural classification databases. These facts make the automated, highly accurate technique for prediction of protein structural classes necessary. We aim to generate a computational method by using digital pseudo images of proteins and support vector machine for prediction of protein structural classes with a high generalization capacity and high accuracy. This PhD thesis introduces a new set of features, using some of the digital image analysis features to represent proteins for structural class prediction. Predicted secondary structure sequences, amino acid sequences and Position-Specific Scoring Matrices of the proteins in the widely used low homology datasets are transformed to the digital images represented by a variety of gray levels. Then, digital image analysis features based on the texture of an image are applied to those images driven from proteins. Support vector machine technique is used to classify proteins into four structural classes; +and /The overall accuracies of 87.2%, 82.1, 83.3%, 91.2% and 65% are achieved for vi 25PDB, 1189, 640, FC699, and SCOP datasets, respectively. The prediction accuracy of the proposed method is compared with existing successful methods and we conclude that our proposed method is superior to all existing methods. Insufficient classification of proteins belonging to +and /classes is one of the major problems in the existing approaches for the prediction of protein structural classes. The proposed method with digital image driven features and SVM reveal the best results with the highest accuracy especially for +class as well as for other three structural classes.
Benzer Tezler
- Preparation of hemoglobin imprinted surface plasmon resonance biosensors
Hemoglobin baskılanmış yüzey plazmon rezonans biyosensörlerin hazırlanması
YEŞEREN SAYLAN
- Nadir metabolik hastalıklarda tüm ekzom dizileme verilerinin biyoinformatik analizleri ile fenotipten sorumlu varyantların değerlendirilmesi
Bioinformatics analysis and variant interpretation of whole exome sequencnig data in inborn errors of metabolism
CAN KOŞUKCU
Doktora
Türkçe
2024
Endokrinoloji ve Metabolizma HastalıklarıHacettepe ÜniversitesiPediatrik Temel Bilimler Ana Bilim Dalı
PROF. DR. RIZA KÖKSAL ÖZGÜL
- COVID-19 mutasyonlarının tespitinde yapay zeka tabanlı algoritmaların kullanılması
Use of artificial intelligence-based algorithms in detecting COVID-19 mutations
MEHMET BURUKANLI
Doktora
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. NEJAT YUMUŞAK
- Thermal radiation from solid propellant rocket motor plume
Katı yakıtlı roket motorlarının egzoz gazının termik ışınımı
GÜZİDE ÖZEN
Doktora
İngilizce
2015
Kimya MühendisliğiOrta Doğu Teknik ÜniversitesiKimya Mühendisliği Ana Bilim Dalı
PROF. DR. NEVİN SELÇUK
- A novel approach for identification of thermal and optical characteristics for the active layer of high power photonic devices
Yüksek güçlü fotonik sistemlerin aktif katmanının termal ve optik özelliklerinin karakterizasyonu için yeni bir yaklaşım
AHMET METE MUSLU
Yüksek Lisans
İngilizce
2019
Elektrik ve Elektronik MühendisliğiÖzyeğin ÜniversitesiMakine Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET ARIK