Geri Dön

Sağlık alanında yapılan araştırmalarda kümeleme algoritmalarının kullanımı: Bir uygulama

Usage of cluster algorithms in health studies: An application

  1. Tez No: 412777
  2. Yazar: ÖZGE PASİN
  3. Danışmanlar: PROF. DR. HANDAN ANKARALI
  4. Tez Türü: Yüksek Lisans
  5. Konular: Biyoistatistik, Biostatistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: Türkçe
  9. Üniversite: Düzce Üniversitesi
  10. Enstitü: Sağlık Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Biyoistatistik ve Tıbbi Bilişim Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 239

Özet

Kümeleme yöntemleri ile benzer özelliklere sahip değişken ve bireyler bir grupta toplanabilmektedir. Birçok uygulama alanına sahip olmasına rağmen kümeleme yöntemi ülkemizde sağlık araştırmalarında nadir olarak kullanılmaktadır. Bu tez çalışmasının amacı, farklı kümeleme algoritmalarını tanıtmak ve bu algoritmaların nasıl ve hangi durumlarda doğru bir şekilde kullanılabileceğini göstermektir. Aynı zamanda sağlık alanından elde edilmiş gerçek bir veri seti üzerinde uygulanabilir olan farklı kümeleme algoritmalarının sonuçlarını karşılaştırmaktır. Yapılan değerlendirmeler sonucunda kullanılan iki farklı veri seti için hesaplanan kappa katsayıları istatistiksel olarak orta düzeyde anlamlı bulundu. Gerçekleştirilen uygulama sonucunda her iki veri seti için de kappa katsayısı bakımından en uygun ve en hızlı sonuçlar üreten algoritmanın En Uzak İlk Kümeleme Yöntemi olduğu sonucuna varıldı. Framingham risk grupları ile oluşturulan kümeler arasında çapraz tablolar oluşturularak grupların dağılımı incelendiğinde ise, en isabetli kararların Make Density Based ve EM algoritmalarıyla elde edilen kümeleme sonuçları olduğu görüldü. Sonuç olarak kümeleme yöntemlerinin hastalıklara ait risk faktörlerinin incelenmesinde, klinik bilgileri de dikkate alarak hastalık gruplarının oluşturulmasında ve buna bağlı olarak da doğru hastalık teşhislerinin konulmasında önemli bir yol oynacağı düşünülmektedir. Ayrıca veri dağılımı ve özellikleri dikkate alınarak kullanıldığında kümeleme algoritmalarının, sağlık alanında her türlü planlama ve hastalık teşhisi için bir tanı aracı olarak kullanılabileceği kanısındayız.

Özet (Çeviri)

With clustering methods variable and individuals which have similar characteristics may be collected in a group. Although clustering methods have many applications, there are limited studies in health researchs in our country. While the purpose of this study is to introduce different clustering algorithms and show how and which cases shoul be correctly used. At the same time, different clustering algorithms results which can be applied on a real data set were compared. According to the evaluations, for two different data sets the kappa coefficients were statististically significant and its degree are intermediate. In terms of both data sets the most convenient and fastest algorithm is farthest clustering algorithm. The results obtained by Make Density Based and EM algorithms gave the most accurate desicions in terms of the distribution of the groups among Framingham risk groups crosstables. As a result, with taking into account the criterion of clinical information it is thought that the examination of clustering of risk factors of the disease, will be played an inportant role for intorduction of accurate disease diagnosis. In addition we believe that when considering data distribution and characteristics of data sets clustering algorithms can be used as a diagnostic tool for the plannings and diagnosis of diseases in the field of health.

Benzer Tezler

  1. Canlı ağırlık ve bazı vücut ölçüleri kullanılarak Karayaka ve Bafra (Sakız X Karayaka G1) koyunlarının çok değişkenli istatistiksel yöntemler ile incelenmesi

    Investigation of Karayaka and Bafra (Chios x Karayaka B1) sheeps with multivariate statistical methods using the live weight and some body measurements

    İBRAHİM KILIÇ

    Doktora

    Türkçe

    Türkçe

    2008

    BiyoistatistikAnkara Üniversitesi

    Veteriner Hekimliği Bölümü

    PROF. DR. CEYHAN ÖZBEYAZ

  2. Mekansal-zamansal hasta hareketlilik verileriyle mekansal etkileşim örüntülerinin analizi ve akış haritaları aracı tasarımı ve geliştirilmesi

    Analysis of spatial interaction patterns using spatio temporal patient mobility data, and designing and developing a flow mapping tool

    SELMAN DELİL

    Doktora

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    PROF. DR. RAHMİ NURHAN ÇELİK

  3. Makine öğrenmesiyle sağlık sigortalarında kümeleme ve sınıflandırma

    Clustering and classification in health insurances with machine learning

    ÖMER GÜL

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Ticaret Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUSTAFA CEM KASAPBAŞI

  4. COVID-19 sürecinin sosyo-ekonomik etkileri üzerine kümeleme analizi ile bir inceleme

    An investigation on socio-economic impacts of the COVID-19 process by clustering analysis

    MEVLÜD ALTİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    EkonomiMardin Artuklu Üniversitesi

    İktisat Ana Bilim Dalı

    DOÇ. DR. PINAR ÇUHADAR

  5. Kümeleme analizi ile sınıflandırılan İstanbul ilindeki hastanelerin veri zarflama analizi ile verimliliklerinin değerlendirilmesi

    Evaluation of the efficiency of hospitals in Istanbul, classified by clustering analysis, by data envelopment analysis

    EREN EREK

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. BAŞAR ÖZTAYŞİ