Geri Dön

Sparsity-based discriminative tracking with adaptive cue integration

Seyrek kodlama tabanlı adaptif sonuç entegrasyonlu ayırt ederek çalışan görsel nesne takip sistemi

  1. Tez No: 415216
  2. Yazar: HASAN TUĞRUL ERDOĞAN
  3. Danışmanlar: YRD. DOÇ. MEHMET ERKUT ERDEM, YRD. DOÇ. İBRAHİM AYKUT ERDEM
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Hacettepe Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 72

Özet

Bu tezde, modelsiz takibe ilişkin yeni bir yaklaşım sunmaktayız. Öne sürülen görsel nesne takibi çalışması, seyrek kodlama tabanlı ayırt etme odaklı nesne takibi ile çoklu öznitelikleri dinamik bir şemayla birleştirme yöntemlerini kaynaştırmaktadır. Özellikle, modelimiz her bir özniteliği, çalışma sırasında o anki görsel içeriğe göre belirlediği güvenilirlikleri oranında birleştirmektedir. Bu güvenilirlik oranları, seyrek kodlama temelli yapı içindeki her bir özniteliğin, tek başına ortak izleme sonucuna ne ölçüde katkıda bulunduğunu belirlemek için kullanılmaktadır. Sonuç olarak; hedefin bir kısmının görülmediği, pozlama ve görünüş değişikliklerinin olduğu durumları ele alırken daha başarılı sonuçlar elde etmekteyiz. Öne sürülen algoritmanın performansını ve etkinliğini kanıtlamak için birtakım zorlayıcı video kümeleri üzerinde sayısal ve görsel sonuçları sunmaktayız.

Özet (Çeviri)

In this thesis, we present a novel tracking method which does not need to a target model on tracking. The proposed tracker associates the sparsity-based discriminative classifier with an adaptive scheme for multiple cue integration. In particular, our model combines visual cues by using reliability scores, which are calculated at each frame during tracking with respect to the current temporal and visual context dynamically . These reliability scores are used to determine the contribution of each cue within the sparsity based framework in the estimation of the joint tracking result. As a consequence, our method have more performance on overcoming occlusions, pose and appearance changes. To show the effectiveness and the performance of our algorithm, we take quantitative and qualitative results on video sequences which have challenging conditions.

Benzer Tezler

  1. Seyreklik ve sözlük öğrenme yaklaşımlarının sınıflandırma ve yüz tanımaya uygulanması

    Classification and face recognition application of sparsity and dictionary learning based methods

    BERNA AZİZOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2017

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ENDER METE EKŞİOĞLU

  2. Türkçe sözcük anlam belirsizliği giderme

    Word sense disambiguation for Turkish

    BAHAR İLGEN

    Doktora

    Türkçe

    Türkçe

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. EŞREF ADALI

    YRD. DOÇ. DR. AHMET CÜNEYD TANTUĞ

  3. Hand gesture classification using features of multivariate synchrosqueezing transform based time-frequency matrix

    Çok değişkenli senkron sıkıştırma dönüşümüne dayalı zaman-frekans matrisinin özelliklerini kullanarak el hareketi sınıflandırılması

    LÜTFİYE SARIPINAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilim ve Teknolojiİzmir Katip Çelebi Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ONAN GÜREN

  4. Gözü kapalı kaynak ayrıştırmada seyreklik tabanlı yöntemler ve DUET algoritması

    Sparsity based methods in blind source separation and the DUET algorithm

    MURAT ELMAS

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. ENDER METE EKŞİOĞLU

  5. Sparsity based pansharpening and a new pansharpening method using a guiding image

    Seyreklik tabanlı pankeskinleştirme ve kılavuz görüntü kullanan yeni bir pankeskinleştirme yöntemi

    RONGLEI JI

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    İletişim Bilimleriİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    DOÇ. DR. ENDER METE EKŞİOĞLU