Geri Dön

A multi-instance based learning system for scene recognition

Sahne tanıma problemi̇ i̇çi̇n çoklu örnek tabanlı öğrenme si̇stemi̇

  1. Tez No: 415218
  2. Yazar: EZGİ EKİZ
  3. Danışmanlar: YRD. DOÇ. DR. NAZLI İKİZLER CİNBİŞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Hacettepe Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 74

Özet

Sahne tanıma problemi, bilgisayarlı görünün sıklıkla çalışılan alanlarından biridir. Bu problemin amacı, gözlenen bir resmin çekildiği ortama ait etiketin bulunmasıdır. Resmin içerisindeki genel mekansal düzenlemeler, nesnelerin gözlenmesi ve bunların konumları gibi çeşitli görsel ipuçları bir sahnenin kategorize edilmesine yardımcı olabilir. Ayrıca, birbirine çok benzeyen sahneler fotoğraflanmaları sırasındaki bakış açılarına göre görsel olarak çeşitlilik gösterebilirler. Bu tip yerleşim değişikliklerini ele almak adına, bu tezde çoklu alan seçimi tabanlı bir yaklaşım önerilmektedir. Bu amaçla, öncelikle aynı sahnenin resimlerine ait paylaşılan ve temsil edici büyük alanların elde edilmesine dair yeni bir yöntem önerilmektedir. Daha sonra bu alanlar bir çoklu örnekle öğrenme sisteminde değerlendirilmektedir. Böylelikle, sahneye ait genel yapının yakalanması amaçlanmaktadır. Ayrıca bu genel yapı, yerel yapının ayırt edici parçalar cinsinden kodlandığı yerel bir yaklaşım ile birleştirilmektedir. Ek olarak son dönemde popüler olan derin sinir ağları kullanılarak daha önce elde edilen büyük alanlar ifade edilmekte ve bu gösterim hem çoklu örnekle öğrenme sistemi ile, hem de VLAD gösterimi ile kodlanmaktadır. Hem genel ve yerel yapıdan, hem de çeşitli kodlama yöntemlerinden gelen bilgilerin birleştirilmesi amacı ile gözetimli bir sonradan birleştirme yöntemi sunulmaktadır. Birleştirmenin, farklı yöntemlere ait bilgilerin tamamlayıcı yapısını ortaya çıkardığı, sahne tanıma probleminde sıklıkla kullanılan MIT-İç mekan, 15-Sahne and UIUC-Spor veri kümeleri üzerinde yapılan deneyler ile gösterilmiştir.

Özet (Çeviri)

Scene recognition is a frequently-studied topic of computer vision. The aim in scene recognition is to predict the general environment label of a given image. Various visual elements contribute to the characterization of a scene, such as its spatial layout, the associated object instances and their positions. In addition, due to the variations in photographic arrangements, similar scenes can be photographed from quite different angles. In order to capture such intrinsic characteristics, in this thesis, we introduce a multi-region classification approach for scene recognition. For this purpose, we first introduce a novel way of extracting large image regions, which are expected to be representative and possibly shared among the images of a scene. We utilize these candidate image regions within a multiple instance learning framework. In this way, we aim to capture the global structure of a given scene. This global representation is then combined with a local representation, where local structures are encoded using a discriminative parts approach. Furthermore, we use recently popular deep network structures to represent our large regions and encode these via both multiple instance learning and VLAD representation. In order to merge information from both global and local characteristics and also from different encodings, a supervised late fusion method is performed and shown to capture complementary information in the experiments performed on commonly used scene recognition datasets MIT-Indoor, 15-Scenes and UIUC-Sports.

Benzer Tezler

  1. Non- incremental classification learning algorithms based on voting feature intervals

    Oylayan öznitelik bölüntülerine dayalı toplu sınıflandırma öğrenme algoritmaları

    GÜLŞEN DEMİRÖZ

  2. Güç sistemlerinde geçici hal kararsızlığının ve gelişiminin derin öğrenme ve karar ağacı tabanlı yöntemler ile geniş alan ölçümlerine dayalı olarak erken kestirimi

    Wide area measurement based early prediction of power system transient instability and its evolution using deep learning and decision tree based algorithms

    MERT KESİCİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. VEYSEL MURAT İSTEMİHAN GENÇ

  3. Applications of deep reinforcement learning for advanced driving assistance systems

    İleri sürüş destek sistemleri için derin pekiştirmeli öğrenme uygulamaları

    MUHARREM UĞUR YAVAŞ

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Mekatronik Ana Bilim Dalı

    DOÇ. DR. TUFAN KUMBASAR

  4. Subspace discovery with supervised learning for SSVEP based brain-computer interfaces

    DHGUP bazlı beyin-bilgisayar arayüzü için gözetimli öğrenme yöntemiyle altuzay keşfi

    ABDULLAH KUTAY CANKI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik MühendisliğiSabancı Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HÜSEYİN ÖZKAN

  5. Fisher kernel based models for image classification and object localization

    Başlık çevirisi yok

    RAMAZAN GÖKBERK CİNBİŞ

    Doktora

    İngilizce

    İngilizce

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversité de Grenoble

    DR. CORDELIA SCHMID

    DR. JAKOB VERBEEK