İçerik tabanlı görüntü erişiminde öznitelik füzyonu
Weighted feature fusion for content-based image retrieval
- Tez No: 418590
- Danışmanlar: YRD. DOÇ. EMRE SÜMER
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: Türkçe
- Üniversite: Başkent Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 77
Özet
Bu çalışmada, içerik tabanlı görüntü erişim problemlerinin çözümünde tercih edilen tanımlayıcılardan en yaygın olarak kullanılan SIFT (Scale Invariant Feature Transform), SURF (Speeded-Up Robust Features) ve ORB'nin (Oriented FAST and Rotated BRIEF) performansları değerlendirilmiş ve probleme özgü tanımlayıcı tercih etmek yerine jenerik bir çözüm olarak“Ağırlıklandırılmış Öznitelik Füzyonu”önerilmiştir. Inria'nın 2 temel veri kümesi üzerinde testler yapılmış ve geri getirim sonuçlarının hassasiyetinin yükseltilmesi hedeflenmiştir. Önerilen yaklaşımın, tanımlayıcıların tek başlarına uygulandığı durumlarda; ORB'nin tek başına uygulandığı duruma göre %10-30, SIFT'in tek başına uygulandığı duruma göre %9-22, SURF'un tek başına uygulandığı duruma göre %12-29 daha az Yanlış Pozitif ürettiği gözlenmiştir.
Özet (Çeviri)
The feature descriptors such as SIFT (Scale Invariant Feature Transform), SURF (speeded-up Robust Features) and ORB (Oriented FAST and Rotated BRIEF) are known as the most commonly used solutions for the content-based image retrieval problems. In this paper, a generic approach called“Weighted Feature Fusion”is proposed as a generic solution instead of applying problem-specific descriptors alone. Experiments were performed on two basic data sets of the Inria in order to improve the precision of retrieval results. It was found that in cases where the descriptors were used alone the proposed approach yielded 10-30% more accurate results than the ORB alone. Besides, it yielded 9-22% and 12-29% less False Positives compared to the SIFT alone and SURF alone, respectively.
Benzer Tezler
- Prediction of COVID 19 disease using chest X-ray images based on deep learning
Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini
ISMAEL ABDULLAH MOHAMMED AL-RAWE
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ADEM TEKEREK
- A decision support system based on content-based image retrieval for breast cancer diagnosis
Meme kanseri tanısı için içerik tabanlı görüntü erişimine dayanan bir karar destek sistemi
NUH ALPASLAN
Doktora
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü ÜniversitesiBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
DOÇ. DR. DAVUT HANBAY
PROF. DR. PRABİR BHATTACHARYA
- Derin öğrenme ile çoklu bantlı uzaktan algılanmış görüntülerin içerik tabanlı erişimi
Content based multivariate remote sensing image retrieval with deep learning
ÖZGÜ GÖKSU
Yüksek Lisans
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGebze Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ERCHAN APTOULA
- Büyük veri tabanlarında özniteliklerin etiketlere indirgenmesine dayalı içerik tabanlı görüntü erişimi
Content-based image retrieval based on indexing of code words and metadata attributes in large database
HALİS YILBOĞA
Yüksek Lisans
Türkçe
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. MİNE ELİF KARSLIGİL YAVUZ
- Attention based image retrieval
Dikkat tabanlı görüntü erişimi
GÜLŞAH TÜMÜKLÜ ÖZYER
Doktora
İngilizce
2012
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. FATOŞ T. YARMAN VURAL