Decentralized Kalman filter approach for multi-sensor multi-target tracking problems
Çoklu sensör çoklu hedef izleme problemleri üzerine bir dağıtılmış Kalman filtresi yaklaşımı
- Tez No: 434016
- Danışmanlar: Assoc. Prof. Dr. AŞKIN DEMİRKOL
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: İngilizce
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Elektronik Bilim Dalı
- Sayfa Sayısı: 77
Özet
Doğru pozisyon ve hedeflerin sayısı hava trafik kontrol ve füze savunması için çok önemli bilgilerdir. Bu çalışma, çoklu sensorlü çoklu hedef takibi sistemlerindeki veri füzyonu ve durum tahmini problemlerı için dağıtık Kalman Filtreleme Algoritması sunmaktadır. Problem, radar olarak her biri kendi veri işleme birimine sahip aktif sensörlerin hedef alanını gözlemlemesini esas almaktadır. Bu durumda her bir sistemin iz sayısı olacaktır. Çalışmada önerilen dağıtık Kalman Filtresi, başta füze sistemleri olmak üzere savunma sistemlerinde hareketli hedeflerin farklı sensörlerle izlerini kestirmek ve farklı hedefleri ayrıd etmek için kullanmaktır. Önerilen teknik, çoklu sensör sisteminden gelen verileri işleyen iki aşamalı veri işleme yaklaşımını içermektedir. İlk aşamada, her yerel işlemci kendi verilerini ve standart Kalman filtresi ise en iyi kestirimi yapmak için kullanılmaktadır. Sonraki aşamada bu kestirimler en iyi küresel bir kestirimi yapmak amacıyla dağıtık işlem modunda elde edilir. Bu çalışmada iki radar sistemi iki yerel Kalman filtresi ile uçakların pozisyonunu kestirmek amacıyla kullanılmakta, ardından bu kestirimler merkez işlemciye iletilmektedir. Merkez işlemci doğrulama maksadıyla bu bilgileri birleştirip küresel bir kestirim üretmektedir. Önerilen model uygulama olarak dört senaryo üzerinde test edildi. İlk senaryoda, tek bir hedef iki sensor tarafından izlenirken, ikincisinde, iki hedeften oluşan uzay herhangi bir sensor tarafından izlenmekte, üçüncüsünde, iki hedefin de herhangi bir sensor tarafından aynı anda izlenmesi, son olarak ise iki sensörden her birinin toplam üç hedeften herhangi ikisini izlediği senaryo göz önüne alınmıştır. Önerilen tekniğin performansı hata kovaryans matrisi kullanılarak değerlendirildi ve yüksek doğruluk ve optimal kestirim elde edildi. Uygulama sonuçları önerilen tekniğin yeteneğinin, yerel sensörlerce belirlenen ortak hedeflerin merkezi sistem tarafından ayırd edilebildiğini göstermiştir.
Özet (Çeviri)
For air traffic control and missile defense, the accurate position and the numbers of targets are the most important information needed. This thesis presents a decentralized kalman filtering algorithm (DKF) for data fusion and state estimation problems in multi-sensor multi-target tracking system. The problem arises when several sensors carry out surveillance over a certain area and each sensor has its own data processing system. In this situation, each system has a number of tracks. The DKF is used to estimate and separate the tracks from different sensors represent the targets, when the ability to track targets is essential in missile defense. The proposed technique is a two stage data processing technique which processes data from multi sensor system. In the first stage, each local processor uses its own data to make the best local estimation using standard kalman filter and then these estimations are then obtained in parallel processing mode to make best global estimation. In this work, two radar systems are used as sensors with two local Kalman filters to estimate the position of an aircraft and then they transmit these estimations to a central processor, which combines this information to produce a global estimation. The proposed model is tested on four scenarios, firstly, when there is one target and the two sensors are tracking the same target, secondly, when there are two targets and any sensor is tracking one of them, thirdly, when there are two targets and any sensor is tracking both of them and finally, when two sensors are used to track three targets and any sensor tracks any two of them. The performance of the proposed technique is evaluated using measures such as the error covariance matrix and it gave high accuracy and optimal estimation. The experimental results showed that the proposed method has the ability to separate the joint targets detected by the local sensors.
Benzer Tezler
- Ayrık zamanlı PID ve PIR kontrolörlerin baskın kutup atama yöntemi ile tasarımı
Design of discrete time PID and PIR controllers with dominant pole assignment
AYŞE DUMAN MAMMADOV
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET TURAN SÖYLEMEZ
- Ağ iletişimlerinde temel yenilikçi çözümlerin standartlaştırılması
Standardization of basic innovative solutions in network communications
MUHAMMED SALİH KALKAN
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÖKHAN SEÇİNTİ
- Mobile robot odometric localization using decentralized kalman filter
Dağıtık kalman filtresi kullanılarak mobil robot odometrik konumlandırması
N'DJADJO ROMUALD KOUAKOU
Yüksek Lisans
İngilizce
2018
Elektrik ve Elektronik MühendisliğiSakarya ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. AŞKIN DEMİRKOL
- Dördün genlik modülasyonu kullanarak senkrofazör ölçüm yöntemi
Synchrophasor measurement method based on quadrature amplitude modulation
ALİ GÖKOĞLU
Yüksek Lisans
Türkçe
2020
Elektrik ve Elektronik MühendisliğiGazi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. ÖZGÜL SALOR DURNA
- Development of inertial navigation system with applications to airborne collision avoidance
Ataletsel seyrüsefer sistemi geliştirilmesi ve hava aracı çarpışma önleme uygulamalarında kullanımı
MEHMET HASANZADE
Yüksek Lisans
İngilizce
2016
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ALİ FUAT ERGENÇ