Sales history-based demand prediction by using generalized linear models
Genelleştirilmiş doğrusal modeller kullanarak satış geçmişi tabanlı talep tahminlemesi
- Tez No: 447145
- Danışmanlar: YRD. DOÇ. DR. SELMA TEKİR
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: İngilizce
- Üniversite: İzmir Yüksek Teknoloji Enstitüsü
- Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 113
Özet
Gelişmiş veri toplama ve depolama yetenekleri çok büyük miktarlardaki verileri uygun formatlarda erişilebilir hale getirmektedir. Birçok ticari firma kurumsal verilerini dijital ortamda saklayabilmektedir. Bu durumda, tahminleme analitiği firmaların karlılıklarını yükseltmek için karar destek sistemlerinin önemli bir parçası haline gelir. Tahminleme analitiklerinde, regresyon modelleme dalı genellikle satış miktarı gibi nümerik yanıt değişkeninin tahminlemesinde kullanılır. Son yıllarda, genelleştirilmiş doğrusal modeller ele alınan problemleri daha iyi adresleyen bir genelleştirme sağlamak için kullanılmaya başlanmıştır. İlk olarak, modellerdeki hata terimlerinin normal dağıldığı varsayımından vazgeçilmiş, daha sonra, tahmin değişkenleri ile yanıt değişkeni arasındaki ilişki tek bir birim fonksiyonu yerine bağ fonksiyonları ile ifade edilmiştir. Bu tezin kapsamında genelleştirilmiş doğrusal modeller kullanılarak satış miktarı tahminleme probleminin modellemesi çalışması yapılmıştır. Bir firmaya ait satış verileri keşifçi veri analizi teknikleri ile incelenmiştir. Yanıt değişkeninin uyum gösterdiği olasılık dağılımına göre uygun bir bağ fonksiyonu kullanılmıştır. Deneysel sonuçlar diğer regresyon modelleri, sınıflandırma algoritmaları ve zaman serileri modelleri ile karşılaştırılmıştır. Model seçimi Akaike ölçütü (AIC) ve ortalama hata kareleri (MSE) metrikleri kullanılarak uygulanmıştır.
Özet (Çeviri)
Improved data collection and storage capabilities make vast amounts of data available in appropriate formats. Commercial enterprises store their sales data. It's vital for companies to accurately predict demand by utilizing the existing sales data. Such predictive analytics is a crucial part of their decision support systems to increase the profitability of the company. In predictive data analytics, the branch of regression modeling commonly is used to predict a numerical response variable like sales amount. In recent years, generalized linear models provide a generalization to better address the specificities of the problem at hand. To begin with, they relax the assumption of normally distributed error terms. Moreover, the relationship of the set of predictor variables and the response variable could be represented by a set of link functions rather than the sole choice of the identity function. This thesis models the sales amount prediction problem through the use of generalized linear models. Unique company sales data are explored and fitted accordingly with the right distribution function of the response variable along with an appropriate link function. The experimental results are compared with the other regression models, classification algorithms, and time series models. The model selection is performed via the use of MSE and AIC metrics respectively.
Benzer Tezler
- Makine öğrenmesi yardımıyla zincir restoran gıda satışlarının tahmin edilmesi ve hava durumunun etkisinin incelenmesi
Forecasting food sales on chain restaurant and investigating weather effect on sales by using machine learning methods
SEZGİ ŞENER
Yüksek Lisans
Türkçe
2019
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. BAŞAR ÖZTAYŞİ
- Ankara ili doğal gaz tüketiminin yapay sinir ağları ile öngörüsü
Prediction of natural gas consumption in Ankara region using artifical neural networks
BURAK TAŞKINER
Yüksek Lisans
Türkçe
2018
Enerjiİstanbul Teknik ÜniversitesiEnerji Bilim ve Teknoloji Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BURAK BARUTÇU
- Deniz ticaret endekslerini zaman serisi modelleri kullanarak tahminleme
Forecasting maritime trade indexes by using the time series models
KAAN KOYUNCU
Doktora
Türkçe
2022
Denizcilikİstanbul Teknik ÜniversitesiDeniz Ulaştırma Mühendisliği Ana Bilim Dalı
PROF. DR. LEYLA TAVACIOĞLU
- Üretim kaynakları planlaması (MRP II) ve yan sanayi maliyet analizi ve kontrolü sistemi
Manufacturing resources planning (MRPII) and vendor firms cost analysis and control system
SERKAN SANCAN
Yüksek Lisans
Türkçe
1997
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. TUFAN VEHBİ KOÇ
- Kredi kartları riskleri ve güvenlik önlemlerinin sigortacılık açısından incelenmesi
Research on the risks of credit cards and security implementations in the view of insurance
AYŞEGÜL BÖLÜKBAŞI