Geri Dön

Göz kırpma tabanlı sürücü yorgunluk değerlendirme sistemi tasarımı

Eye-blink based driver fatigue assessment system design

  1. Tez No: 496122
  2. Yazar: SONER KARAGÜLMEZ
  3. Danışmanlar: DOÇ. DR. AHMET EMİR DİRİK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: Türkçe
  9. Üniversite: Uludağ Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 86

Özet

Günümüzde birçok insan trafik kazalarında hayatlarını kaybetmektedir. Ölümcül trafik kazalarının en önemli nedeni olarak sürücülerin uykusuzluğu ve yorgunluğu gösterilmektedir. Bu çalışmada, araç sürücülerinin yorgun ya da dinç olduğuna karar veren yeni bir sistem sunulmaktadır. Önerilen sistem dört aşamadan oluşmaktadır. İlk aşamada sayısal bir kamera üzerinden göz bölgeleri tespit edilerek takip edilmektedir. İkinci aşamada takip edilen gözün açık ya da kapalı olup olmadığı kestirilmektedir. Bu aşama sonunda, sürücünün göz durumu ve zaman bilgisini veren bir göz durum vektörü oluşturulmaktadır. Üçüncü aşamada bu göz durum vektörü üzerinden 7 adet istatistiksel öznitelik çıkarılmaktadır. Son aşamada ise bu özniteliklerin kullanışlı olanları elenmekte ve elenen bu öznitelikler bir yapay sinir ağının değerlendirmesine sunularak sürücünün yorgun olup olmadığına karar verilmektedir. Deneysel sonuçlar, kişilerin yorgunluk derecelerinin 25 video ve 5 farklı kişi üzerinden %96'lık bir başarımla doğru olarak ölçülebildiğini göstermektedir.

Özet (Çeviri)

Today, so many people die because of traffic accidents. It is shown that drowsiness and fatigue are the most important reasons of fatal traffic accidents. In this study a new system deciding whether a driver is fatigued or not is proposed. The proposed system consists of four stages. In the first stage, eye regions are finded and tracked by a digital camera. In the second stage, it is predicted that the tracked eye is open or close. At the end of the stage, an eye state vector giving eye state and time information is created. In the third stage, seven statistical features are extracted from the eye-state vector. At the last stage, effective features are eliminated and presented as an evaluation of a neural network and it decides whether the driver is fatigued or not. Experimental results show that people's fatigue levels are correctly measured 96% accuracy on 25 videos and 5 different people.

Benzer Tezler

  1. Yapay görme ile sürücü yorgunluk durumunun tespit edilmesi

    Detecting driver fatigue with artificial vision

    ALİ AKİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGebze Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HABİL KALKAN

  2. Derin öğrenme tabanlı sürücü yorgunluğu sezme ve tahmin sistemi geliştirilmesi

    Detecting drivers' fatigue and development of a prediction system based on deep learning

    BURCU KIR SAVAŞ

    Doktora

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. YAŞAR BECERİKLİ

  3. Video based detection of driver fatigue

    Görüntü aracılığıyla sürücüde yorgunluğun sezimi

    ESRA VURAL

    Doktora

    İngilizce

    İngilizce

    2009

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı Üniversitesi

    PROF. DR. AYTUL ERCİL

    YRD. DOÇ. DR. MUJDAT CETİN

  4. Gerçek zamanlı uykulu sürüş algılama sistemi

    Drowsy driving detection system

    SEDAT GOLGİYAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ERHAN AKIN

  5. Kompresör uygulaması için sürekli mıknatıslı senkron motor tasarımı

    Permanent magnet synchronous motor design for compressor application

    SERHAT GÜNERİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜVEN KÖMÜRGÖZ KIRIŞ