Göz kırpma tabanlı sürücü yorgunluk değerlendirme sistemi tasarımı
Eye-blink based driver fatigue assessment system design
- Tez No: 496122
- Danışmanlar: DOÇ. DR. AHMET EMİR DİRİK
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2017
- Dil: Türkçe
- Üniversite: Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 86
Özet
Günümüzde birçok insan trafik kazalarında hayatlarını kaybetmektedir. Ölümcül trafik kazalarının en önemli nedeni olarak sürücülerin uykusuzluğu ve yorgunluğu gösterilmektedir. Bu çalışmada, araç sürücülerinin yorgun ya da dinç olduğuna karar veren yeni bir sistem sunulmaktadır. Önerilen sistem dört aşamadan oluşmaktadır. İlk aşamada sayısal bir kamera üzerinden göz bölgeleri tespit edilerek takip edilmektedir. İkinci aşamada takip edilen gözün açık ya da kapalı olup olmadığı kestirilmektedir. Bu aşama sonunda, sürücünün göz durumu ve zaman bilgisini veren bir göz durum vektörü oluşturulmaktadır. Üçüncü aşamada bu göz durum vektörü üzerinden 7 adet istatistiksel öznitelik çıkarılmaktadır. Son aşamada ise bu özniteliklerin kullanışlı olanları elenmekte ve elenen bu öznitelikler bir yapay sinir ağının değerlendirmesine sunularak sürücünün yorgun olup olmadığına karar verilmektedir. Deneysel sonuçlar, kişilerin yorgunluk derecelerinin 25 video ve 5 farklı kişi üzerinden %96'lık bir başarımla doğru olarak ölçülebildiğini göstermektedir.
Özet (Çeviri)
Today, so many people die because of traffic accidents. It is shown that drowsiness and fatigue are the most important reasons of fatal traffic accidents. In this study a new system deciding whether a driver is fatigued or not is proposed. The proposed system consists of four stages. In the first stage, eye regions are finded and tracked by a digital camera. In the second stage, it is predicted that the tracked eye is open or close. At the end of the stage, an eye state vector giving eye state and time information is created. In the third stage, seven statistical features are extracted from the eye-state vector. At the last stage, effective features are eliminated and presented as an evaluation of a neural network and it decides whether the driver is fatigued or not. Experimental results show that people's fatigue levels are correctly measured 96% accuracy on 25 videos and 5 different people.
Benzer Tezler
- Yapay görme ile sürücü yorgunluk durumunun tespit edilmesi
Detecting driver fatigue with artificial vision
ALİ AKİN
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGebze Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. HABİL KALKAN
- Derin öğrenme tabanlı sürücü yorgunluğu sezme ve tahmin sistemi geliştirilmesi
Detecting drivers' fatigue and development of a prediction system based on deep learning
BURCU KIR SAVAŞ
Doktora
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. YAŞAR BECERİKLİ
- Video based detection of driver fatigue
Görüntü aracılığıyla sürücüde yorgunluğun sezimi
ESRA VURAL
Doktora
İngilizce
2009
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı ÜniversitesiPROF. DR. AYTUL ERCİL
YRD. DOÇ. DR. MUJDAT CETİN
- Gerçek zamanlı uykulu sürüş algılama sistemi
Drowsy driving detection system
SEDAT GOLGİYAZ
Yüksek Lisans
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ERHAN AKIN
- Kompresör uygulaması için sürekli mıknatıslı senkron motor tasarımı
Permanent magnet synchronous motor design for compressor application
SERHAT GÜNERİ
Yüksek Lisans
Türkçe
2015
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik Mühendisliği Ana Bilim Dalı
DOÇ. DR. GÜVEN KÖMÜRGÖZ KIRIŞ