Developing machine learning methods for network anomaly detection
Bilgisayar ağlarında anormal durum tespiti yapan öğrenme yöntemlerinin geliştirilmesi
- Tez No: 513764
- Danışmanlar: DR. ÖĞR. ÜYESİ ZAFER AYDIN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: Abdullah Gül Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 67
Özet
Makine öğrenmesi, verilerdeki bilginin bir bilgisayar ya da makina tarafından otomatik olarak öğrenilmesi ve karşılaşılan yeni durumlarda anlamlı bilgi ya da davranışların üretilmesini amaçlar. Bir çok uygulama alanı bulunan makine öğrenmesi daha önce hiç karşılaşılmamış olan sıradışı durumların tespit edilmesi için de kullanılmaktadır. Bilgisayar ağlarındaki siber saldırılar, kredi kartı dolandırıcılığı ve internet sitelerinin linklerine yapılan çok sayıda sahte tıklamalar dünya genelinde ekonomileri ciddi oranda zarara uğratabilecek niteliktedir. Bu tezde üç farklı anormal durum tespiti problemi üzerinde çalışılmıştır: bilgisayar ağlarında saldırı tespiti, kredi kartı dolandırıcılığı tespiti ve internet sitelerdeki linklere sahte tıklama tespiti. Anormal durum tespiti için geliştirilen ve optimize edilen modeller arasında rastgele orman, en yakın komşu, destek vektör makinası, logistic regresyon, karar ağacı, AdaBoost, çantalama ve yığınlama gibi sınıflandırma yöntemleri bulunmaktadır. Yöntemlerin hiper-parametreleri eğitim kümelerinde yapılan çapraz doğrulama deneyleri ile optimize edilmiştir. Bir sonraki aşamada optimum hiper-parametre konfigürasyonları kullanılarak eğitilen modeler ile test verilerinde tahmin sonuçları hesaplanmıştır. Bu deneyler neticesinde genel doğruluk oranı ve F-measure skorlarında yüksek başarı elde edilmiştir. Geliştirilen yöntemler arasında en başarılı sonuçlar topluluk modelleri ile elde edilmiştir.
Özet (Çeviri)
Machine learning refers to training of a computer (machine) to be able to acquire knowledge from data (i.e. experience) and improve itself on a given task. The field of machine learning has become a mainstream, improving hundreds of millions of lives. Fraudulent actions in computer networks, credit card transactions and website advertisement traffic might devastate large businesses and cause anually fiscal loss of billions of dollars around the globe. In this thesis, we propose various machine learning methods for three fraud detection problems: network anomaly detection, credit card fraud detection and detection of fraudulent clicks to advertisements on the internet. We design various classifiers such as logistic regression, k-nearest neighbors, decision tree, support vector machine, and ensemble classifiers such as random forest, bagging, stacking and AdaBoost. The hyper-parameters of the classifiers are optimized by performing cross-validation experiments on train sets. In the next step, the models are trained using the optimum hyper-parameter configurations and predictions are computed on test sets. Among the various methods compared the highest accuracy is obtained by ensemble learners.
Benzer Tezler
- Makine öğrenmesi algoritmalarının hibrit yaklaşımı ile ağ anomalisi tespiti
Network anomaly detection with a hybrid approach of machine learning algorthms
FEYZA ÖZGER
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Uygulamalı Bilimler ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. HALİT ÖZTEKİN
- A new architecture for network intrusion detection systems by learning jointly from tabular and text-based features
Ağ sızma tespit sistemleri için tablosal ve metin temelli özniteliklerden birlikte öğrenmeye dayalı yeni bir mimari
BERKANT DÜZGÜN
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKadir Has ÜniversitesiYönetim Bilimleri Ana Bilim Dalı
PROF. DR. HASAN DAĞ
- Makine öğrenmesi yöntemleriyle anormal içme suyu tüketimlerinin tespit edilmesi ve tahmin modellerinin geliştirilmesi
Detecting abnormal drinking water consumptions and developing forecast models by machine learning methods
İSMAİL GÜNEY
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilişim Sistemleri Mühendisliği Ana Bilim Dalı
DOÇ. DR. İHSAN HAKAN SELVİ
- Yapay zekâya dayalı anlamsal video işleme yöntemlerinin tıpta kullanılabilirliğinin araştırılması
Investigation of usability of artificial intelligence semantic video processing methods in medicine
HASAN UCUZAL
Yüksek Lisans
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü ÜniversitesiBiyoistatistik ve Tıp Bilişimi Ana Bilim Dalı
DR. ÖĞR. ÜYESİ EMEK GÜLDOĞAN
- Makine öğrenimini kullanarak IoT ağlarında saldırı tespiti
Intrusion detection in IoT networks using machine learning
HANAN ABU KWAIDER
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMersin ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. ERDİNÇ AVAROĞLU