Applications of machine learning in classification of biological data
Biyolojik verilerin sınıflandırılmasında makine öğreniminin kullanımı
- Tez No: 514953
- Danışmanlar: DOÇ. DR. CEM ÖZEN
- Tez Türü: Yüksek Lisans
- Konular: Biyoloji, Biology
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: Kadir Has Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Hesaplamalı Biyoloji ve Biyoinformatik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 67
Özet
Makine öğrenimi, bilgisayarların veriden öğrenmesini sağlar. Çok çeşitli uygulama alanlarına sahiptir. Hesaplamalı biyoloji ve biyoinformatik, makine öğrenimi uygulamalarının problemlere doğru çözümler sağladığını gösteren bazı alanlardır. Farklı makine öğrenimi algoritmaları, denetimli, yarı denetimli, denetimsiz ve takviye öğrenme olarak özetlenmiştir. Bu tezde, biyolojik veri kümeleri üzerinde denetlenen makine öğrenimi algoritmalarına odaklanıldı. Farklı veri kümelerine çoklu makine öğrenme yaklaşımları uygulanıldı. K-en yakın komşu, softmax sınıflandırması, sinir ağları yaklaşımları kullanıldı. Ayrıca, bir biyolojik veriyi sınıflandırmak için uygun algoritmalar ve kabul edilebilir makine öğrenme modelleri tartışıldı.
Özet (Çeviri)
Machine learning enables computers learn from the data. It has a wide range of application areas. Computational biology and bioinformatics are some areas in which machine learning applications provide accurate solutions to problems. Different types of machine learning tasks are summarized as supervised, semi-supervised, unsupervised and reinforcement learning. In this thesis, we focus on supervised machine learning tasks on biological datasets. We applied multiple machine learning approaches to different datasets. K-nearest neighbor, softmax classification, neural networks approaches are considered. Moreover, we discussed suitable algorithms and acceptable machine learning models to classify a biological data.
Benzer Tezler
- Multiclass classification of hepatic anomalies based on in vivo microwave dielectric properties
Hepatik anomalilerin in vivo mikrodalga dielektrik özelliklerine dayalı çok sınıflı sınıflandırılması
ZEYNEP GÜLSÜM BİLGEN
Yüksek Lisans
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ TUBA YILMAZ ABDOLSAHEB
- Softly semi-supervised learning for bioinformatics applications
Biyoenformatik uygulamaları için kesin etiketlenmemiş veriler ile yarı-gözetimli öğrenme
MELİS ÖZGÜR ÇETİNKAYA DEMİR
Yüksek Lisans
İngilizce
2014
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ARZUCAN ÖZGÜR
- Makine öğrenmesi algoritmaları yardımı ile polisomnografi sinyallerinden uyku evreleri sınıflandırılması
Classification of sleep stages from polysomnography signals with the help of machine learning algorithms
HİLAL SULTAN DURANOĞLU TUNÇ
Yüksek Lisans
Türkçe
2019
Elektrik ve Elektronik MühendisliğiAtatürk ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET ERTUĞRUL
- Efficient optimization algorithms for computational biology
Hesaplamalı biyolojide etkin eniyileme algoritmaları
OĞUZ CAN BİNATLI
Doktora
İngilizce
2024
Endüstri ve Endüstri MühendisliğiKoç ÜniversitesiEndüstri Mühendisliği ve Operasyon Yönetimi
PROF. DR. MEHMET GÖNEN
- İnsan gen yolaklarında ikâme modelleme ve makine öğrenmesi kullanarak varyant analizi
Variant analysis in human gene networks using surrogate modelling and machine learning
FURKAN AYDIN
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SÜHA TUNA