Geri Dön

Derin öğrenme yöntemi ile köpek davranışlarının analizi ve sınıflandırılması

Analysis and classification of dog behaviours using deep learning

  1. Tez No: 529691
  2. Yazar: RUKİYE POLATTİMUR
  3. Danışmanlar: DR. ÖĞR. ÜYESİ EMRE DANDIL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Derin Öğrenme, Evrişimsel Sinir Ağları(ESA, CNN), Bilgisayarlı Görü, Köpek Davranışları, Hayvan Davranış Tespiti, Deep Learning, Convolutional Neural Networks (CNN), Computer Vision, Dog Behaviours, Animal Behavior Detection
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Bilecik Şeyh Edebali Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 94

Özet

Hayvan yüzlerinin, vücut duruşlarının, davranışlarının ve fiziksel hareketlerinin gözlenmesi ve tanınması son zamanlarda disiplinlerarası bir alan olarak ön plana çıkmıştır. Bilgisayarlı görü, sayısal görüntü işleme gibi alanlardaki önemli teknolojik gelişmeler, videolar üzerinde insan davranışlarının analizinde kullanılabilmesinin yanında hayvan davranışlarının tespit edilmesinde yardımcı bir yöntem olmaktadır. Hayvanlarda, özellikle davranışların bilgisayarlı görü yöntemiyle tespiti ile ortaya çıkabilecek sonraki davranışların öngörülmesine ve hayvanların evcilleştirilmesine katkı sunabilir. Önerilen tez çalışmasında, köpeklerin davranışlarının analiz edilmesi ve sınıflandırılması için derin öğrenmeye dayalı bir sistem önerilmiştir. Giydirilebilir aksiyon kamera ve sabit kamera kullanılarak insanlar ile temastan kaçınmayan iki farklı türde köpeğin davranışlarını içeren videolar toplanarak bir veri seti oluşturulmuştur. Sonraki aşamada ise, köpeklerin davranışlarını analiz eden ve sınıflandırılmasını sağlayan derin öğrenme tabanlı uygulama gerçekleştirilmiştir. Elde edilen videolar üzerinde gerekli analizler yapıldıktan sonra belirlenen ağız açma, dil çıkarma, kulak dikme, kuyruk sallama, koklama, oyun oynama gibi davranışlar videolardan çıkarılarak, daha anlamlı bölümlerden oluşan özelleştirilmiş bir veri seti getirilmiştir. Bu videolardan anlamlı bölümlerin elde edilmesi ve özellik çıkarımı yapıldıktan sonra R-CNN (Bölgesel Evrişimsel Sinirsel Ağlar) ile belirlenen davranışların analizi gerçekleştirilmiştir. Yapılan deneysel çalışmalar üzerinde, köpeklerin ağız açma, dil çıkarma, kulak dikme, kuyruk sallama, koklama, oyun oynama davranışları incelenmiş ve bu davranışlar için sırasıyla %100, %99.99, %99.99, %95.99, %99.28, %99.64 eğitim başarımı elde edilmiştir.

Özet (Çeviri)

Observation and recognition of animal faces, body postures, behaviors, and physical movements has recently become one of the most fundamental tasks of multidiscipline. The outstanding technological advances in areas such as computer vision and digital image processing can be used in the analysis of human behaviors on videos, as well as helping to detect animal behavior. In animals, it can contribute to the prediction of subsequent behaviors that may occur with computerized vision, and to domesticate animals. In the proposed thesis work, a system based on deep learning has been proposed to analyze and classify the behavior of dogs. A database was created by collecting videos showing the behavior of two different species dogs that do not avoid contact with people by using the wearable action camera and fixed camera. In the next stage, a deep learning-based application was conducted to analyze and classify the behavior of dogs. Determined behaviors such as mouth opening, tongue out, ears up, tail wagging, sniffing, playing, after the necessary examinations were made on the obtained videos, a special set of more meaningful sections was introduced. After feature extraction and obtaining meaningful sections from these videos, analysis of the behavior was performed by R-CNN. On the experimental studies, the behavior of the dog such as mouth opening, tongue out, sniffing, ears up, tail wagging, playing was examined and, training performance was obtained 100%, 99.99%, 99.28%, 99.99%, 95.99%, 99.64% for these behaviors, respectively.

Benzer Tezler

  1. Derin öğrenme yöntemi ile protein ikincil yapı tahmini

    Protein secondary structure prediction using deep learning method

    EZGİ ÇAKMAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilişim Sistemleri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İHSAN HAKAN SELVİ

  2. Derin öğrenme yöntemi ile iyonosferik tec değişimlerinin tahmin edilmesi

    Forecasting of ionospheric tec variations by deep learning method

    İSMAİL DEMİRYEGE

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilim ve TeknolojiHarran Üniversitesi

    Harita Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ MUSTAFA ULUKAVAK

  3. Derin öğrenme yöntemi ile yüzeyel EMG işaretlerini sınıflandırarak dirsek eklemi için pozisyon kestirimi

    Position estimation for elbow joint by classification of surface EMG signals with deep learning methods

    AYBİKE PİROL

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilim ve TeknolojiÇukurova Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ CABBAR VEYSEL BAYSAL

  4. Derin öğrenme yöntemi ile Google ve Yandex görüntülerinden stadyum tespiti

    Stadium detection from Google and Yandex images with deep learning method

    EMRE BATUHAN SAMUR

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Mühendislik BilimleriEskişehir Teknik Üniversitesi

    Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Ana Bilim Dalı

    DOÇ. DR. UĞUR AVDAN

  5. Derin öğrenme yöntemi ile el yazısı tanıma

    Deep learning method for handwriting recognition

    AYŞE AYVACI ERDOĞAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolNecmettin Erbakan Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ABDULLAH ERDAL TÜMER