Geri Dön

Anomaly-based cyber intrusion detection system with ensemble classifier

Topluluk öğrenmesiyle anomali tabanlı siber ihlal tespit sistemi

  1. Tez No: 539903
  2. Yazar: ALPER SARIKAYA
  3. Danışmanlar: DOÇ. DR. BANU GÜNEL KILIÇ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Orta Doğu Teknik Üniversitesi
  10. Enstitü: Enformatik Enstitüsü
  11. Ana Bilim Dalı: Bilişim Sistemleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 77

Özet

Günümüzde, siber saldırılar giderek artan bir şekilde meydana gelmektedir. Bununla birlikte, siber saldırıların çeşitliliği, büyüklüğü ve yoğunluğu artmaktadır. Güvenlik cihazlarının logları incelendiğinde, büyük miktarda saldırı izi elde edilmektedir. Ayrıca, insanlar için logların doğru olarak değerlendirmesi de zordur. Bu nedenle, bu çok büyük veri setinden bir saldırıyı ayırt etmek için kullanılabilecek anahtar verilerin tanımlanması hem saldırıların hızlı tespiti hem de güvenlik cihazlarının hızlı bir şekilde tepki göstermesi açısından önemlidir. Bu çalışma, makine öğrenmesi yoluyla loglardan uygun verilerin seçimine ve bu verilerin seçiminde bir saldırıya özgü ayırt edici özelliklerin belirlenmesine odaklanmaktadır. Seçilen özellikler kullanılarak, bir sınıflandırma metodolojisi önerilmiştir. Sonuç olarak, 19 özellik ile önerilen model kullanılarak %80,20 ortalama doğruluk başarılmıştır. Ayrıca, DoS ve Exploit sınıflarında daha iyi bir tespit oranı elde edilmiştir.

Özet (Çeviri)

Nowadays, cyberattacks are occurring progressively. Along with this, diversity, size and density of the cyberattacks are increasing. When the logs of security devices are analyzed, massive amounts of attack signs are detained. Besides, it is also difficult for humans to evaluate the logs accurately. Therefore, the identification of key data, which can be used to distinguish an attack from this very large data set, is important for both rapid detection of attacks and rapid response of security devices. This study focuses on selection of appropriate features from logs via machine learning and determining the distinctive attributes specific to an attack in the selection of these data. Based on the selected features, a classification methodology is proposed. As a result, 80.20% overall accuracy has been achieved using the proposed model with 19 features. Moreover, a better detection rate on DoS and Exploit classes has been obtained.

Benzer Tezler

  1. Nesnelerin interneti tabanlı ağ trafiğinde ileri makine öğrenimi ve derin öğrenme yöntemleri ile anomali tespiti

    Anomaly detection in internet of things based network traffic with advanced machine learning and deep learning methods

    YAĞIZ ONUR KOLCU

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAfyon Kocatepe Üniversitesi

    Bilgisayar Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ AHMET HAŞİM YURTTAKAL

  2. Anomaly-based intrusion detection using machine learning: a case study on probing attacks

    Makina öğrenmesi ile kurumsal bir ağda anomali tabanlı siber ihlal tespit sistemi: keşif saldırıları üzerinde bir vaka çalışması

    EMRAH TUFAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Siber Güvenlik Ana Bilim Dalı

    DOÇ. CENGİZ ACARTÜRK

    DR. ÖĞR. ÜYESİ CİHANGİR TEZCAN

  3. Saldırı tespit ve engelleme sistemleri için yapay zeka tabanlı yeni bir güvenlik modelinin oluşturulması

    Building a new artificial intelligence based security model for intrusion detection and prevention systems

    İLHAN FIRAT KILINÇER

    Doktora

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ABDULKADİR ŞENGÜR

    DOÇ. DR. FATİH ERTAM

  4. Nesnelerin interneti ekosisteminde yapay zeka tabanlı saldırı tespit sistemi geliştirilmesi

    Developing an artificial intelligence based intrusion detection system on internet of things ecosystem

    UMUR KURİŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-Cerrahpaşa

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ÖZGÜR CAN TURNA

  5. Ağ anomalisi tespitinde emülatör ortamı tasarımı ve makine öğrenmesi ile saldırı tespiti

    Emulator environment design for network anomaly detection and attack detection with machine learning

    SERKAN KESKİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBurdur Mehmet Akif Ersoy Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ERSAN OKATAN