Geri Dön

Extractive text summarization for Turkish using TF-IDF and pagerank algorithms

TF-IDF ve pagerank algoritmaları kullanılarak Türkçe için text özetleme

  1. Tez No: 544361
  2. Yazar: EMRE AKÜLKER
  3. Danışmanlar: YRD. DOÇ. DR. ÇİĞDEM TURHAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 129

Özet

Bilgi teknolojileri ve İnternet altyapısının gelişmesi ile birlikte kullanıcıların bilgiye ulaşması çok daha hızlı ve basit bir hale gelmiştir. Ancak, bu gelişmelerin bir başka sonucu da bilgi fazlalığına neden olması ve bunun sonucu olarak istenilen başlık altındaki bilgiye ulaşmanın gün be gün daha da zor bir hale gelmesidir. Otomatik Doküman Özetleme ile birlikte dokümanların içerisindeki ana bilginin korunması sağlanarak kullanıcıya istediği bilgiyi sağlamasına yardım edilmektedir. Bu tez, istatistiksel tabanlı TF-IDF algoritması ve TF-IDF ile grafik tabanlı PageRank algoritmasının birleşimi ile geliştirilen tekli otomatik doküman özetleme sisteminin sunumunu kapsar. Bu çalışma kullanılan algoritmaların Türkçe için uygulanabilirliği ve etkisinin ortaya çıkarımının gösterimini amaçlamaktadır. Ayrıca birbirinden ayrı olarak geliştirilen TF-IDF ve TF-IDF ile PageRank (hibrid) uygulamaları birbirleri ile kesinlik, hassasiyet ve F-puanı olarak karşılaştırılmıştır.

Özet (Çeviri)

The improvements on the information technologies and the Internet infrastructure have enabled the users to reach information in an easier and faster manner. However, another consequence of the improvements is the information overload. To reach the required information about a specific topic has become more difficult day by day. Automatic text summarization helps to solve the problem by minimizing the document size while keeping its core information required by the user. This thesis presents an extractive single document automatic text summarization system for Turkish, which implements the statistical-based TF-IDF algorithm as well as a hybrid approach which is a combination of TF-IDF with the graph-based PageRank algorithm. The study aims to reveal the usability and the effectiveness of these algorithms for Turkish documents. Moreover, TF-IDF and TF-IDF with PageRank (Hybrid) systems have been evaluated and compared with each other using the co-selection evaluation techniques precision, recall and F-score.

Benzer Tezler

  1. Identifying ımage related sentences in news articles

    Haber makalelerinde görüntü ile i̇lgili cümlelerin belirlenmesi

    MELİKE ESMA İLTER GÜLAÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. LALE AKARUN ERSOY

    DOÇ. DR. ARZUCAN ÖZGÜR TÜRKMEN

  2. A deep learning-based extractive text summarization system for Turkish news articles

    Türkçe haber metinleri için derin öğrenme tabanlı çıkarıcı metin özetleme sistemi

    ÖZCAN GÜNDEŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi Üniversitesi

    Yönetim Bilişim Sistemleri Ana Bilim Dalı

    YRD. DOÇ. AHMET ONUR DURAHİM

  3. Çıkarımsal metin özetleme yöntemlerinin Türkçe metinler üzerinde karşılaştırılması

    Comparison of extractive text summarization methods in Turkish texts

    SEMİH MARANGOZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgi ve Belge YönetimiKocaeli Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. AHMET SAYAR

  4. Abstractive legal text summarization using attention mechanisms

    Dikkat mekanizmalarını kullanarak abstraktif hukuki metin özetleme

    RAFAH ALOMAR

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Bilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MURAT CAN GANİZ

  5. Otomatik metin özetleme sistemi

    Automatic tex summarization system

    AYSUN GÜRAN

    Doktora

    Türkçe

    Türkçe

    2013

    MatematikYıldız Teknik Üniversitesi

    Matematik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. NİLGÜN GÜLER BAYAZIT