Geri Dön

Hiperspektral görüntülerde derin öğrenme yaklaşımının sınıflandırma başarımı üzerine etkisi

The effect of deep learning approach on classification performance in hyperspectral images

  1. Tez No: 568362
  2. Yazar: GİZEM ORTAÇ
  3. Danışmanlar: YRD. DOÇ. DR. GIYASETTİN ÖZCAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Bursa Uludağ Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 115

Özet

Hiperspektral sensörlerin gelişimiyle beraber hiperspektral görüntüleme uzaktan algılama alanında oldukça ilgi çeken bir konu haline gelmiştir. Görüntülenen yüzey materyallerinden yansıyan enerjinin dar ve bitişik çok sayıda dalga boyunda ölçüm yapılmasını sağlayan hiperspektral görüntüleme, oldukça yüksek boyutta ve birbiriyle ilişkili veri elde edilmesini sağlamaktadır. Bu verilerin saklanması, işlenmesi ve yorumlanması; hesaplama karmaşıklığı ve işlem yükü sebebiyle oldukça zordur. Bu nedenle hiperspektral verilerin sınıflandırılmasında geleneksel olarak ön işlem aşamasında boyut indirgeme yöntemleri uygulanmaktadır. Bununla birlikte geleneksel sınıflandırıcılar ve boyut indirgeme yöntemleri spektral boyutta zorlu bir işlemdir ve ayırt edici özniteliklerin çıkarımında yetersiz kalmaktadır. Aynı zamanda kesin bir sınıflandırıcı ve boyut indirgeme yöntemi seçim yöntemi de bulunmamaktadır. Son yıllarda ise derin öğrenme yöntemleri kullanılarak hiperspektral verilerin alt uzaya indirgenmeden daha gürbüz, uyarlanabilir ve ham verilerden çıkarılan öznitelikler ile sınıflandırılması oldukça dikkat çekici bir yaklaşım olmuştur. Hiperspektral görüntülerin derin öğrenme yöntemlerinden özellikle evrişimsel sinir ağları ile sınıflandırımı umut vadedici sonuçlar sağlamaktadır. Tez kapsamında, yaygın olarak tercih edilen hiperspektral veri setleri kullanılarak uzaysal, spektral ve uzaysal-spektral öznitelikleri kullanan bir boyutlu, iki boyutlu ve üç boyutlu evrişimsel sinir ağları ile sınıflandırma yapılmıştır. Spektral ve uzaysal boyutlardaki özniteliklerin hem ayrı ayrı hem de birlikte kullanımı ile hiperspektral sensörler tarafından sağlanan tüm öznitelikler etkin olarak sınıflandırmaya dahil edilmiştir. Ayrıca yapılan çalışmada, geleneksel sınıflandırma ve konvolüsyonel sinir ağları arasında karşılaştırmalı bir çalışma ve analiz yapılmıştır. Yapılan deneysel çalışmalar ile evrişimsel sinir ağları kullanılarak oldukça yüksek sınıflandırma başarısı elde dilmiştir. Aynı zamanda önerilen konvolüsyonel sinir ağı mimarilerinin, geleneksel yöntemlerden %5 ve %9 oranında daha iyi bir sınıflandırma oranı sağladığı görülmüştür.

Özet (Çeviri)

With the development of hyperspectral sensors, hyperspectral imaging has become a subject of interest in the field of remote sensing. Hyperspectral imaging, which allows measurement of reflected energy from the displayed surface materials at a narrow and adjacent plurality of wavelengths, provides extremely high dimensional and interrelated data. Storing, processing and interpreting and calculating this data is very difficult due to its complexity and processing load. Therefore, in the classification of hyperspectral data, size reduction methods are traditionally used as pre-processing step. However, conventional classifiers and dimension reduction methods are challenging in the spectral dimension and are inadequate in the extraction of distinctive features. There is also no definitive classifier and dimension reduction method selection method. In recent years, it has been a remarkable approach to classify the hyperspectral data with more robust, adaptable and extracted features from raw data by deep learning methods without reducing to subspace. Especially, the classification of hyperspectral images with convolutional neural networks, one of the deep learning methods, provides promising results. Within the scope of this thesis, samples of widely used hyperspectral data sets are classified by using one-dimensional, two-dimensional and three-dimensional convolutional neural networks by extracting spatial, spectral and spatial-spectral features. All the features provided by hyperspectral sensors are included in the classification effectively by using both separately and together spectral and spatial features. In addition, a comparative study and analysis is conducted between conventional classification and convolutional neural networks. Experimental studies have shown that convolutional neural networks have achieved very high classification rates. It has also shown that the proposed convolutional neural network architectures provide a better classification rate of 5% and 9% than the conventional methods.

Benzer Tezler

  1. İnvolüsyonel sinir ağları ile hiperspektral verilerin analizi

    Analysis of hyperspectral data with involutional neural networks

    MÜCAHİT CİHAN

    Doktora

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiKonya Teknik Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MURAT CEYLAN

  2. Hyperspectral image classification with active learning and Bayesian convolutional neural networks

    Aktif öğrenme ve Bayes evrişimsel sinir ağları ile hiperspektral görüntü sınıflandırma

    MAHMOOD SIDDEEQ QADIR QADIR

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. GÖKHAN BİLGİN

  3. Derin öğrenme ile çoklu bantlı uzaktan algılanmış görüntülerin içerik tabanlı erişimi

    Content based multivariate remote sensing image retrieval with deep learning

    ÖZGÜ GÖKSU

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGebze Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ERCHAN APTOULA

  4. Hiperspektral görüntülerde derin öğrenme ile hedef tespiti

    Target detection on hyperspectral images using deep learning

    BATUHAN MERT SEVEROĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiHacettepe Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SENİHA ESEN YÜKSEL ERDEM

  5. Optimization and deep learning based multi model abundance estimation and unmixing algorithms for hyperspectral images

    Hiperspektral görüntülerde optimizasyon ve derin öğrenme tabanlı çok modelli bolluk tahmini ve ayrıştırma algoritmaları

    OKAN BİLGE ÖZDEMİR

    Doktora

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilişim Sistemleri Ana Bilim Dalı

    PROF. DR. YASEMİN ÇETİN

    DOÇ. DR. ALPER KOZ