Driver profiling using long short term memory (LSTM) and convolutional neural network (CNN) methods
UZUN KISA SÜRE BELLEKLİ ÖĞRENME VE EVRİŞİMLİ SİNİR AĞLARI YÖNTEMLERİ İLE SÜRÜCÜ PROFİLLEME
- Tez No: 571024
- Danışmanlar: PROF. DR. HALUK KÜÇÜK
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: Marmara Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 81
Özet
Sürücü araç kullanım şekli, trafik güvenliği, yakıt tüketimi ve gaz emisyonu konuları üzerinde son derece etkilidir. Bu çalışmada, trafik güvenliğini arttırmak için araçtan toplanan verileri yapay sinir ağları kullanarak sınıflandırmak ve bu sayede sürücünün davranış profilini çıkarmak amaçlanmıştır. Sürücü profillemesi üzerindeki yapılan çalışmalar incelendiğinde, akıllı telefonlardan toplanan sensör verileri, kamera görüntüleri ve aracın kendi verileri birlikte kullanılarak sürücü profili çıkarılma üzerine yoğunlaşıldığı görülmüştür. Bu çalışmadaki ise sadece aracın; hız, motor devri, gaz pedalı, fren pedalı, teker açısı ve ivmelenme gibi verileri kullanılarak sınıflandırma yapılmıştır. Sınıflandırmada iki farklı derin öğrenme metodu kullanılmıştır. Zaman bağlı veriler için sıklıkla kullanılan Uzun-Kısa Süreli Bellek (LSTM) ve görüntü işlemede kullanılan ancak zamana bağlı verilerde de tercih edilen CNN (Convolutional Neural Network) derin öğrenme metodu kullanılarak sınıflandırmadaki başarı oranları incelenmiştir. Çalışma sonucunda CNN'in daha yüksek başarı sonuçları verdiği gözlemlenmiştir.
Özet (Çeviri)
Driver profiling has a major impact on traffic safety, fuel consumption and gas emission. The purpose of this work is to feed and train the neural network with the vehicle data and classify the driver behavior. When the driver profiling studies are examined, the majority of studies have classified the driver using sensor, image and vehicle data together. In this study, only the vehicle data such as engine speed, torque, steering wheel angle etc. were used. To classify driver, two different methods were implemented. One of them is Long Short Term Memory (LSTM) Neural Network which is usually for time series data classification and the other method is Convolutional Neural Network (CNN) which is frequently used for image classification but also can be used for time series classification. In the results section of this study, the success rates of two methods in classification were analyzed and the outcomes indicated that Convolutional Neural Network provided higher success rates.
Benzer Tezler
- Building sensor-based real-time predictive maintenance system by utilizing artificial intelligent techniques
Yapay akıllı teknikleri kullanarak sensör tabanlı gerçek zaman tahminli bakım sistemi kurulması
RAGHAD MOHAMMED KHORSHEED
Doktora
İngilizce
2021
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ÖMER FARUK BEYCA
- Energy demand forecasting in fog computing based microgrids using ensemble learning
Sis bilişimi tabanlı mikro şebekelerde topluluk öğrenme ile enerji talep tahmini
TUĞÇE KESKİN
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÖKHAN İNCE
- Ai for drug discovery LSTM-driven drug design using selfies for target-focused de novo generation of HIV-1 protease inhibitor candidates in the treatment of AIDS
Yapay zeka tabanlı LSTM destekli ilaç tasarımı: AIDS tedavisinde selfıes kullanarak HIV-1 proteaz odaklı inhibitör adaylarının tasarlanması
M.TALEB ALBRIJAWI
Yüksek Lisans
İngilizce
2023
Biyomühendislikİstanbul Medipol ÜniversitesiBiyomedikal Mühendisliği ve Biyoenformatik Ana Bilim Dalı
PROF. DR. REDA ALHAJJ
- Konteyner liman operasyonlarının makine öğrenmesi yöntemleri ile analizi
Analysis of container port operations using machine learning methods
ÜSTÜN ATAK
Doktora
Türkçe
2022
Deniz Bilimleriİstanbul Teknik ÜniversitesiDeniz Ulaştırma Mühendisliği Ana Bilim Dalı
PROF. DR. YASİN ARSLANOĞLU
PROF. DR. TOLGA KAYA
- Deformation estimation of a tendon-driven elastic actuator with soft strain sensors
Yumuşak gerilme sensörleri ile tendon kontrollü esnek aktuatörün deformasyon tahmini
MILAD HAYATI
Yüksek Lisans
İngilizce
2023
Mekatronik MühendisliğiSabancı ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
Assist. Prof. Dr. MELİH TÜRKSEVEN