Driver profiling using long short term memory (LSTM) and convolutional neural network (CNN) methods
UZUN KISA SÜRE BELLEKLİ ÖĞRENME VE EVRİŞİMLİ SİNİR AĞLARI YÖNTEMLERİ İLE SÜRÜCÜ PROFİLLEME
- Tez No: 571024
- Danışmanlar: PROF. DR. HALUK KÜÇÜK
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: Marmara Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 81
Özet
Sürücü araç kullanım şekli, trafik güvenliği, yakıt tüketimi ve gaz emisyonu konuları üzerinde son derece etkilidir. Bu çalışmada, trafik güvenliğini arttırmak için araçtan toplanan verileri yapay sinir ağları kullanarak sınıflandırmak ve bu sayede sürücünün davranış profilini çıkarmak amaçlanmıştır. Sürücü profillemesi üzerindeki yapılan çalışmalar incelendiğinde, akıllı telefonlardan toplanan sensör verileri, kamera görüntüleri ve aracın kendi verileri birlikte kullanılarak sürücü profili çıkarılma üzerine yoğunlaşıldığı görülmüştür. Bu çalışmadaki ise sadece aracın; hız, motor devri, gaz pedalı, fren pedalı, teker açısı ve ivmelenme gibi verileri kullanılarak sınıflandırma yapılmıştır. Sınıflandırmada iki farklı derin öğrenme metodu kullanılmıştır. Zaman bağlı veriler için sıklıkla kullanılan Uzun-Kısa Süreli Bellek (LSTM) ve görüntü işlemede kullanılan ancak zamana bağlı verilerde de tercih edilen CNN (Convolutional Neural Network) derin öğrenme metodu kullanılarak sınıflandırmadaki başarı oranları incelenmiştir. Çalışma sonucunda CNN'in daha yüksek başarı sonuçları verdiği gözlemlenmiştir.
Özet (Çeviri)
Driver profiling has a major impact on traffic safety, fuel consumption and gas emission. The purpose of this work is to feed and train the neural network with the vehicle data and classify the driver behavior. When the driver profiling studies are examined, the majority of studies have classified the driver using sensor, image and vehicle data together. In this study, only the vehicle data such as engine speed, torque, steering wheel angle etc. were used. To classify driver, two different methods were implemented. One of them is Long Short Term Memory (LSTM) Neural Network which is usually for time series data classification and the other method is Convolutional Neural Network (CNN) which is frequently used for image classification but also can be used for time series classification. In the results section of this study, the success rates of two methods in classification were analyzed and the outcomes indicated that Convolutional Neural Network provided higher success rates.
Benzer Tezler
- Anomaly detection in ınternet of medical things using deep learning
Anomaly detect ionin internet of medical things using deep learning
AYŞE BETÜL BÜKEN
Yüksek Lisans
İngilizce
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiYazılım Mühendisliği Ana Bilim Dalı
PROF. DR. DEVRİM AKGÜN
- Building sensor-based real-time predictive maintenance system by utilizing artificial intelligent techniques
Yapay akıllı teknikleri kullanarak sensör tabanlı gerçek zaman tahminli bakım sistemi kurulması
RAGHAD MOHAMMED KHORSHEED
Doktora
İngilizce
2021
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ÖMER FARUK BEYCA
- Derin sinir ağları ve öğrenme aktarımı ile kötü amaçlı yazılım tespiti
Malware detection with deep neural networks and transfer learning
ŞEYMA NUR ÖZDEMİR
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÖZDE KARATAŞ BAYDOĞMUŞ
DOÇ. DR. ÖNDER DEMİR
- Building energy efficiency: A data-driven machine learning approach for energy optimization
Bina enerji verimliliği: Enerji optimizasyonu için veriye dayalı makine öğrenmesi yaklaşımı
AHMAD REZA DARABI
Yüksek Lisans
İngilizce
2025
Enerjiİstanbul Teknik ÜniversitesiEnerji Bilim ve Teknoloji Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUSTAFA BERKER YURTSEVEN
- Test verilerine dayalı, makine öğrenmesi ve derin öğrenme yöntemleri ile batarya sağlık durumu tahmini
Battery state of health estimation based on test data using machine learning and deep learning methods
MEHMET ALİ ARSLANTAŞ
Yüksek Lisans
Türkçe
2025
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
PROF. DR. FİKRET ÇALIŞKAN