Transfer öğrenme kullanılarak yapay arı koloni programlama
Artificial bee colony algoritm using transfer learning
- Tez No: 572866
- Danışmanlar: DOÇ. DR. CELAL ÖZTÜRK
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: Türkçe
- Üniversite: Erciyes Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 61
Özet
Yapay Arı Koloni Programlama (ABCP), Yapay Arı Koloni (ABC) algoritmasına dayanan parametrik ve yapısal optimizasyon problemleri için kullanılan bir makine öğrenmesi metodudur. Genetik Programlama (GP) gibi, sembolik regresyon problemlerinin çözümünde yaygınca kullanılmaktadır. Transfer öğrenme ise daha önce belli bir problem için eğitilmiş olan bir sistemin bilgisinin, benzer dağılıma sahip farklı bir problemde kullanılması yaklaşımıdır. Literatürde, transfer ögrenme yaklaşımının klasik makine öğrenmesi tekniklerine ve GP'ye uygulanarak başarılı sonuçlar elde edildiği çalışmalar bulunmaktadır. Bu çalışmada ise transfer öğrenme yaklaşımı ABCP'ye ilk defa uygulanmış ve ortaya çıkan yeni algoritmaların tümü ABCP-T olarak adlandırılmıştır. Literatürdeki bazı sembolik regresyon problemleri ile gerçekleştirilen deneyler sonucunda, ABCP-T'nin, standart ABCP'ye göre daha başarılı sonuçlar elde ettiği gözlemlenmiştir.
Özet (Çeviri)
Artificial Bee Colony Programming (ABCP) is a machine learning method based on Artificial Bee Colony (ABC) algorithm used for parametric and structured optimization problems. It is absolutely used for the solution of symbolic regression problems as Genetic Programming (GP). On the other hand, transfer learning is the approach of using the knowledge of a system trained for a particular problem in another problem having a similar distribution. There are a number of research studies in the literature reporting the successful applications of the transfer learning to machine learning and GP. In this study, the transfer learning approach is applied to ABCP for the first time and all of the new methods created this way are named as ABCP-T. As a result of the experiments conducted for the symbolic regression problems in the literature, it is observed that ABCP-T gives better results than the standard ABCP.
Benzer Tezler
- Derin öğrenme ile insan edimlerinin tanınması
Human action recognition using deep learning
TAYYİP ÖZCAN
Doktora
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. ALPER BAŞTÜRK
- A hybrid deep learning metaheuristic model for diagnosis of diabetic retinopathy
Diyabetik retinopatinin tanısı için hibrit bir derin öğrenme meta-sezgisel modeli
ÖMER FARUK GÜRCAN
Doktora
İngilizce
2022
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ÖMER FARUK BEYCA
- Konik ışınlı bilgisayarlı tomografi görüntülerinin yapay zekâ ile değerlendirilmesi
Evaluation of cone-beam computed tomography images with artificial intelligence
TUĞBA ARI
Diş Hekimliği Uzmanlık
Türkçe
2022
Diş HekimliğiEskişehir Osmangazi ÜniversitesiAğız, Diş ve Çene Radyolojisi Ana Bilim Dalı
DOÇ. DR. İBRAHİM ŞEVKİ BAYRAKDAR
- Yapay zekâ yöntemleriyle termoelektrik modülün kontrolü
Control of thermoelectric module with artificial intelligence methods
TUFAN KOÇ
Doktora
Türkçe
2024
Elektrik ve Elektronik MühendisliğiMilli Savunma ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NEVRA BAYHAN
PROF. DR. SEDAT BALLIKAYA
- Büyük boyutlu veriler için metasezgisel yöntemler ile öznitelik indirgemede yeni bir yaklaşım geliştirilmesi
Developing a new approach to feature selection with metaheuristic methods for large scale data
ESİN AYŞE ZAİMOĞLU
Doktora
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. NİLÜFER YURTAY