Uzaktan algılanmış hiperspektral görüntülerin uzamsal-izgesel piksel sınıflandırması
Spatial-spectral pixel classification of remote sensing hyperspectral images
- Tez No: 576066
- Danışmanlar: DOÇ. DR. ERCHAN APTOULA
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: Türkçe
- Üniversite: İstanbul Okan Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 72
Özet
Uzaktan algılanan hiperspektral görüntülerin sınıflandırılması son yıllarda birçok araştırmanın konusu olmuştur. Hiperspektral görüntüler sivil ve askeri alanda, tarım, yer bilimi, tıp, savunma ve güvenlik, hedef belirleme, şehir planlama gibi farklı disiplinlerdeki birçok alanda kullanılmaktadır. Bu tez çalışmasında uzaktan algılanan hiperspektral görüntünün her bir pikseline uygun bir sınıf etiketi atanması probleminde, ROSIS sensörüne ait Pavia Üniversitesi veri seti üzerinde, hiperspektral verinin spektral (izgesel) bilgisi ile birlikte uzamsal bilginin ayrı ayrı ve birlikte kullanılmasının evrişimsel sinir ağları ağları ile eğitilerek sınıflandırma başarına etkileri incelenmiştir. Ayrıca sadece spektral bilgiyi içeren vektörler ile uzamsal bilgiyi de içeren tensörler aynı anda farklı evrişimsel sinir ağları ile eğitilmiş ve kaynaştırma yönteminin sınıflandırma başarımına etkisi incelenmiş ve karşılaştırmalar yapılmıştır.
Özet (Çeviri)
Classification of remotely sensed hyperspectral images has been the subject of many researchers in recent years. Hyperspectral imagery is used in many disciplines such as civil and military field, agriculture, location science, medicine, defense and security, goal setting, city planning. In this thesis, assigning a class tag to each pixel of the remotely sensed hyperspectral view was applied to the Pavia University dataset of the ROSIS sensor and spectral (spectral) information of hyperspectral data and the spatial and temporal effects of spatial and temporal information on the success of classifications in training with neural networks. Furthermore, only the vectors containing spectral information and the tensors including spatial information are trained with different convolutional neural networks at the same time and the effect of the fusing method on the classification performance was examined and compared.
Benzer Tezler
- Derin öğrenme ile çoklu bantlı uzaktan algılanmış görüntülerin içerik tabanlı erişimi
Content based multivariate remote sensing image retrieval with deep learning
ÖZGÜ GÖKSU
Yüksek Lisans
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGebze Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ERCHAN APTOULA
- U-net tabanlı evrişimli sinir ağı ile uzaktan algılanmış görüntülerden otomatik bina tespiti
Automatic building detection from remotely sensed images with u-net based convolutional neural network
İBRAHİM DELİBAŞOĞLU
Doktora
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYalova ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. MÜFİT ÇETİN
- Classification of remotely sensed data by using 2D local discriminant bases
Uzaktan algılanan verilerin 2 boyutlu yerel ayırtaç tabanları ile ayrılması
ÇAĞRI TEKİNAY
Yüksek Lisans
İngilizce
2009
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilişim Sistemleri Ana Bilim Dalı
PROF. DR. YASEMİN YARDIMCI ÇETİN
- Uzaktan algılanmış verilerin derin öğrenme yöntemiyle sınıflandırılması
Classification of remotely sensed data by deep learning method
ELİF ÖZLEM YILMAZ
Yüksek Lisans
Türkçe
2020
Jeodezi ve FotogrametriGebze Teknik ÜniversitesiHarita Mühendisliği Ana Bilim Dalı
PROF. DR. TAŞKIN KAVZOĞLU
- An experimental analysis of feature selection algorithms in hyperspectral image classification
Hiperspektral görüntülerın sınıflamasında öznitelik seçim algoritmalarının deneysel analizi
HAMED GHOLAMI VIJOUYEH
Yüksek Lisans
İngilizce
2017
İletişim Bilimleriİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
YRD. DOÇ. DR. GÜLŞEN TAŞKIN KAYA