Geri Dön

Short-term solar irradiance forecasting with deep neural networks

Derin sinir ağları kullanımıyla kısa süreli güneş ışıması tahminlemesi

  1. Tez No: 587290
  2. Yazar: CANER VATANSEVER
  3. Danışmanlar: DR. ÖĞR. ÜYESİ OĞUZHAN CEYLAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilim ve Teknoloji, Science and Technology
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Kadir Has Üniversitesi
  10. Enstitü: Lisansüstü Eğitim Enstitüsü
  11. Ana Bilim Dalı: Yönetim Bilişim Sistemleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 79

Özet

Güneş enerjisinin kullanımı son 10 yıl içerisinde artış göstermektedir. Ek olarak bu kullanım, son yıllarda, şebeke sistemleri ile entegre edilmeye başlanmıştır. Güneş panellerinden tamamıyla yararlanabilmek için, ışımayı tahmin edebilmek çok önemlidir. 15 dakika sonrasındaki güneş ışıması değerlerini bilerek, güneş paneli içerisindeki direnci tahmin edebilir ve üretimi analiz edebiliriz. Bu çalışma sürgülü pencere yöntemini kullanarak 15 dakika sonrasındaki ışıma tahminlemesine odaklanmıştır. Yapay sinir ağları, k-en yakın komşu ve rassal orman modelleri bu çalışmada optimize edilmiştir. Bu çalışmanın sonucunda, yaklaşık olarak 6% mutlak yüzde hataya ulaşılmıştır.

Özet (Çeviri)

Usage of solar energy has increased through the last decades, and they are being integrated into main grid systems since the recent years. In order to fully bene t from solar panels, predicting irradiance is essential. By knowing 15-minute ahead values of solar irradiance, resistance of the cells inside the solar panels can be measured to analyze production output. This study focuses on 15-minute ahead forecasting of irradiance by using sliding windows method on the feature set. ANN, K-NN, SVM and RF models are optimized in this study. As the result of the study, around 6% MAPE is achieved.

Benzer Tezler

  1. Feasibility analysis based on advanced deep learning techniques in integrating renewable energy resources into microgrids

    Yenilenebilir enerji kaynaklarının mikroşebekelere entegre edilmesinde gelişmiş derin öğrenme tekniklerine dayalı uygulanılabilirlik analizi

    FATHI FARAH FADOUL FATHI FARAH FADOUL

    Doktora

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. RAMAZAN ÇAĞLAR

  2. Short-term solar power forecasting with artificial neural network models

    Yapay sinir ağları modelleri ile kısa süreli güneş enerjisi tahmini

    SEÇKİN GÖKÇE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞAHİN SERHAT ŞEKER

  3. Machine learning techniques for solar power output predicting

    Güneş enerjisi çıkışını tahmin etmek için makine öğrenimi teknikleri

    SAMAA YAHYA DAWOOD AL_MAYYAHI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİstanbul Gelişim Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MAHMOUD HK. ALDABABSA

  4. Enhancing photovoltaic system performance through NARX-LSTM forecasting and neuro-controller based MPPT techniques

    NARX-LSTM tahmın ve nöro-denetleyici temelli MPPT teknikleri vasıtasıyla fotovoltaık sistem performansının artırılması

    OUBAH ISMAN OKIEH

    Doktora

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞAHİN SERHAT ŞEKER

  5. Makine öğrenimi teknikleri ile güneş ışınımı ve güç kestirimi

    Prediction of solar radiation and power using machine learning techniques

    CAN YUNUS ERÖZDEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDokuz Eylül Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. SELMA GÜRLER