Geri Dön

Applications of machine learning to agricultural land values: Prediction and causal inference

Başlık çevirisi mevcut değil.

  1. Tez No: 597906
  2. Yazar: EMRAH ER
  3. Danışmanlar: PROF. NATHAN P. HENDRICKS
  4. Tez Türü: Doktora
  5. Konular: Ekonomi, Ziraat, Economics, Agriculture
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Kansas State University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 97

Özet

Özet yok.

Özet (Çeviri)

This dissertation focuses on the prediction of agricultural land values and the effects of water rights on land values using machine learning algorithms and hedonic pricing methods. I predict agricultural land values with different machine learning algorithms, including ridge regression, least absolute shrinkage and selection operator, random forests, and extreme gradient boosting methods. To analyze the causal effects of water right seniority on agricultural land values, I use the double-selection LASSO technique. The second chapter presents the data used in the dissertation. A unique set of parcel sales from Property Valuation Division of Kansas constitute the backbone of the data used in the estimation. Along with parcel sales data, I collected detailed basis, water, tax, soil, weather, and urban influence data. This chapter provides detailed explanation of various data sources and variable construction processes. The third chapter presents different machine learning models for irrigated agricultural land price predictions in Kansas. Researchers, and policymakers use different models and data sets for price prediction. Recently developed machine learning methods have the power to improve the predictive ability of the models estimated. In this chapter I estimate several machine learning models for predicting the agricultural land values in Kansas. Results indicate that the predictive power of the machine learning methods are stronger compared to standard econometric methods. Median absolute error in extreme gradient boosting estimation is 0.1312 whereas it is 0.6528 in simple OLS model. The fourth chapter examines whether water right seniority is capitalized into irrigated agricultural land values in Kansas. Using a unique data set of irrigated agricultural land sales, I analyze the causal effect of water right seniority on agricultural land values. A possible concern during the estimation of hedonic models is the omitted variable bias so we use doubleselection LASSO regression and its variable selection properties to overcome the omitted variable bias. I also estimate generalized additive models to analyze the nonlinearities that may exist. Results show that water rights have a positive impact on irrigated land prices in Kansas. An additional year of water right seniority causes irrigated land value to increase nearly $17 per acre. Further analysis also suggest a nonlinear relationship between seniority and agricultural land prices.

Benzer Tezler

  1. Toprak özelliklerinin tahmini ve mesafeye bağlı değişkenliğinin haritalanmasında, farklı enterpolasyon yöntemleri ve makine öğreniminin kullanımı

    The use of different interpolation methods and machine learning in the estimation of soil properties and mapping of spatial variability

    OSMAN ABAKAY

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    ZiraatHarran Üniversitesi

    Toprak Bilimi ve Bitki Besleme Ana Bilim Dalı

    PROF. DR. HİKMET GÜNAL

  2. Context-aware remote sensing data processing for improvement of agricultural predictions

    Bağlam farkındalıklı uzaktan algılama veri entegrasyonu ile tarımsal tahminlerin iyileştirilmesi

    AYDA FITRIYE AKTAŞ

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. BURAK BERK ÜSTÜNDAĞ

  3. Identification of tea plantation areas using Google cloud based random forest and deep learning

    Google bulut servise dayalı rastgele orman ve derin öğrenme ile çay tarım alanlarının belirlenmesi

    BERKAY ÖZEN

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ESRA ERTEN

  4. Usage of machine learning methods on precision agriculture applications

    Hassas tarim uygulamalari üzerinde makine öğrenmesi teknikleri kullanimi

    YEKTA CAN YILDIRIM

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnkara Yıldırım Beyazıt Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. MUSTAFA YENİAD

  5. District-based urban sprawl monitoring and modelling using CA-Markov model: application in two mega cities

    İlçe bazlı kentsel yayılma izleme ve CA-Markov model ile modelleme: iki mega şehirde uygulama

    ANALI AZABDAFTARI

    Doktora

    İngilizce

    İngilizce

    2022

    İletişim Bilimleriİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. AYŞE FİLİZ SUNAR