Geri Dön

Otonom araçlarda eş zamanlı lokasyon ve haritalandırma ile genetik algoritma kullanılarak optimum yol seçimi

Optimal road selection by using genetic algorithm and simultaneous location and mapping in autonomous vehicles

  1. Tez No: 606150
  2. Yazar: MERVE NUR DEMİR
  3. Danışmanlar: DOÇ. DR. YUSUF ALTUN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Düzce Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 66

Özet

Teknolojik gelişmeler ve bu zamana kadar biriken bilgilerin ışığında otonom sistemlerde muazzam bir ilerleme kaydedilmiştir. Bu sayede otonom sistemler çarpışmadan kaçınma, trafik işareti tespiti, haritalama vb. sayısız akıllı işlevleri gerçekleştirebilmektedir. Gerçek zamanlı otonom araçların en zorlu problemi aracın kendi kendine haritalandırma ve lokasyon işlemlerini yapabilmesidir. Genetik Algoritma (GA) kullanarak optimize edilmiş lokasyon uygulaması ile otonom araçlar için sürüş güvenliğinin artması beklenmektedir. Bu çalışma da lazer tabanlı bir lokalizasyon ve haritalama tekniğinin üzerine odaklanılmıştır. Gerçekleştirilen sistemde sanal bir test ortamı kurulmuş ve bir otonom araç üzerinde denemeler yapılmıştır. Çalışma kapsamında sanal makineler oluşturularak üzerlerine Linux işletim sistemi kurulmuştur. Sonra bu sanal makinelere ROS ortamında TurtleBot3 kurulmuş ve iç mekân lokalizasyonu yapılarak bir harita elde edilmiştir. Bu harita genetik algoritma ile en kısa mesafelerin bulunmasını sağlamak için kullanılmaktadır. Gözlemler neticesinde simülasyon ortamındaki robot yüksek başarımla istenilen konuma gidebildiği sonucuna ulaşılmıştır.

Özet (Çeviri)

Significant progress has been made in autonomous systems in the light of technological advances and accumulated knowledge to date. In this way, autonomous systems, collision avoidance, traffic sign detection, mapping and so on. It can perform numerous intelligent functions. The most challenging problem of real-time autonomous vehicles is that the vehicle can perform self-mapping and location operations. Optimized location application using Genetic Algorithm (GA) is expected to increase driving safety for autonomous vehicles. This study focuses on a laser-based localization and mapping technique. In the system, a virtual test environment was established and experiments were performed on an autonomous vehicle. Within the scope of the study, virtual machines were created and Linux operating system was installed on them. Then, TurtleBot3 was installed in these virtual machines in ROS environment and a map was obtained by localizing the interior. This map is used to find the shortest distances by genetic algorithm. As a result of the observations, it was concluded that the robot in the simulation environment can go to the desired position with high performance.

Benzer Tezler

  1. Otonom araçlarda fren kararı tahmini için dikkat mekanizması geliştirilmesi

    An attention mechanism for brake decision prediction in autonomous vehicles

    EKREM AKSOY

    Doktora

    Türkçe

    Türkçe

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Osmangazi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AHMET YAZICI

  2. Otonom sürüşte blockchaın ve makine öğreniminin entegrasyonu

    Integration of blockchain and machine learning in autonomous driving

    HUSSAM ALKASHTO

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMersin Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ ABDULLAH ELEVİ

  3. Sabit ve döner kanatlı insansız hava araçlarının aerodinamik iyileştirmeler ile otonom performans maksimizasyonu

    Autonomous performance maximization of fixed and rotary wing unmanned aerial vehicle with aerodynamic improvements

    YÜKSEL ERASLAN

    Doktora

    Türkçe

    Türkçe

    2023

    Uçak MühendisliğiErciyes Üniversitesi

    Uçak Mühendisliği Ana Bilim Dalı

    PROF. DR. TUĞRUL OKTAY

  4. Adaptive autonomous emergency braking system based on estimation of tire/road friction coefficient

    Yol ve tekerlek arasındaki sürtünme katsayısının kestirimine dayalı uyarlamalı otonom acil frenleme sistemi

    ABDULLAH ÖMER SEVİL

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. İBRAHİM EKSİN

  5. Stereo görme ile hareketli görüntülerde engellerin uzaklık ve boyutlarının gerçek zamanlı bulunması

    Real-time distance and dimension estimation of the obstacles using active stereo camera

    EMRE ÖZGÜNDÜZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2008

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. M. ELİF KARSLIGİL