Geri Dön

Reinforcement learning for intrusion detection

Saldırı tespiti için takviyeli öğrenme

  1. Tez No: 679007
  2. Yazar: AHMED MOHAMED SAAD EMAM SAAD
  3. Danışmanlar: DR. ÖĞR. ÜYESİ BEYTULLAH YILDIZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 76

Özet

Bulut bilişim, web servisleri ve Nesnelerin İnterneti sistemleri gibi ağ tabanlı teknolojiler, esneklikleri ve üstünlükleri nedeniyle yaygın olarak kullanılmaktadır. Öte yandan, ağ tabanlı teknolojilerin katlanarak büyümesi, ağ güvenliği sorunlarının büyüklüğünü artırmaktadır. İzinsiz giriş, ağ tabanlı teknolojilerin güvenliğinin önemli bir parçasıdır. Sağlam bir saldırı tespit sistemi uygulamak, izinsiz giriş sorununu çözmek ve ağ tabanlı teknolojilerin ve hizmetlerin güvenli bir şekilde sunulmasını sağlamak için çok önemlidir. Bu tezde, izinsiz girişleri tespit etmek ve ağ uygulamalarını daha güvenli, güvenilir ve verimli hale getirmek için pekiştirmeli öğrenmeyi kullanan yeni bir yaklaşım öneriyoruz. Takviye öğrenme yaklaşımı olarak, ağ trafiği saldırılarını taklit eden ve öğrenme sürecine rehberlik eden, özel olarak uyarlanmış bir Gym ortamının yanında kullanılan derin Q-öğrenme kullanılmaktadır. Uzun-Kısa Süreli Bellek kullanan denetimli bir derin öğrenme çözümü, karşılaştırma için temel yaklaşım alarak uygulanmıştır. NSL-KDD veri kümesi, takviye öğrenme ortamını oluşturmak için kullanılmakta olup temel modeli eğitmek ve değerlendirmek için de kullanılır. Önerilen pekiştirmeli öğrenme yaklaşımının performans sonuçları, temel modele ve literatürdeki diğer çözümlere göre büyük bir üstünlük göstermektedir.

Özet (Çeviri)

Network-based technologies such as cloud computing, web services, and Internet of Things systems are becoming widely used due to their flexibility and preeminence. On the other hand, the exponential proliferation of network-based technologies exacerbated network security concerns. Intrusion takes an important share in the security concerns surrounding network-based technologies. Developing a robust intrusion detection system is crucial to solve the intrusion problem and ensure the secure delivery of network-based technologies and services. In this thesis, a novel approach was proposed using deep reinforcement learning to detect intrusions to make network applications more secure, reliable, and efficient. As for the reinforcement learning approach, Deep Q-Learning is used alongside a custom-built Gym environment that mimics network attacks and guides the learning process. A supervised deep learning solution using a Long-Short Term Memory architecture is implemented to serve as a baseline. The NSL-KDD dataset is used to create the reinforcement learning environment and to train and evaluate the baseline model. The performance results of the proposed reinforcement learning approach show great superiority over the baseline model and the other relevant solutions from the literature.

Benzer Tezler

  1. A QOS-aware self-updating intrusion detection system using reinforcement learning

    Başlık çevirisi yok

    ATHEEL SABIH SHAKER ALAWSI

    Doktora

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik MühendisliğiAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SEFER KURNAZ

  2. Robustness and security deep learning for wireless communications systems

    Kablosuz iletişim sistemleri için sağlamlık ve güvenlik derin öğrenme

    AHMED ADNAN JAWAMEER JAWAMEER

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    Assist. Prof. Dr. SEFER KURNAZ

  3. A deep reinforcement learning approach to network intrusion detection

    Ağ saldırı tespitinde derin pekiştirmeli öğrenim yaklaşımı

    HALİM GÖRKEM GÜLMEZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ PELİN ANGIN

  4. Predicting of distributed denial of service using machine learning algorithms

    Başlık çevirisi yok

    HANEEN KHAIRULLAH TALIB ALSELMI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. OSMAN NURİ UÇAN

  5. Kablosuz algılayıcı ağlarda makine öğrenmeye dayalı enerji verimliliği ve güvenlik teknikleri

    Machine learning based energy efficiency and securitytechniques for wireless sensor networks

    ANEEQA MUMREZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Elektrik ve Elektronik Mühendisliğiİstanbul Üniversitesi-Cerrahpaşa

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ TARIK VELİ MUMCU