Segmentation of retinal blood vesselsusing a novel fuzzy logic algorithm
Başlık çevirisi mevcut değil.
- Tez No: 721939
- Danışmanlar: DR. BUKET D. BARKANA
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: İngilizce
- Üniversite: University of Bridgeport
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 63
Özet
Özet yok.
Özet (Çeviri)
In this work, a rule-based method is presented for blood vessel segmentation in digital retinal images. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. Diabetic retinopathy is the most common diabetic eye disease and a leading cause of blindness. Diagnosis of diabetic retinopathy at an early stage can be done through the segmentation of the blood vessels of retina. Many studies have been carried out in the last decade in order to obtain accurate blood vessel segmentation in retinal images including supervised and rule-based methods. This method uses eight feature vectors for each pixel. These features are means and medians of intensity values of pixel itself, first and second nearest neighbor at four directions. Features are used in fuzzy logic algorithm as crisp input. The final segmentation is obtained using a thresholding method. The method was tested on the publicly available database DRIVE and its results are compared with distinguished published methods. Our method achieved an average accuracy of 93.82% and an area under the receiver operating characteristic curve of 94.19% for DRIVE database. Our results demonstrated an average sensitivity of 72.28% and a specificity of 97.04%. The calculated sensitivity and specificity v values for DRIVE database also state that the proposed segmentation method is effective and robust
Benzer Tezler
- Computer analysis of retinal images for vessel anomaly detection
Retina görüntülerinin damar anomali belirlemek amacıyla bilgisayarda analizi
SHAHAB ASLANI
Yüksek Lisans
İngilizce
2015
Elektrik ve Elektronik MühendisliğiDokuz Eylül ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. HALDUN SARNEL
- Retina görüntülerinde bilgisayar destekli damar segmentasyonu
Computer assisted vessel segmentation from retinal images
ESİN UYSAL
Yüksek Lisans
Türkçe
2019
Mühendislik BilimleriAfyon Kocatepe ÜniversitesiBiyomedikal Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ GÜR EMRE GÜRAKSIN
- Optik koherens tomografi görüntülerinden diyabetik maküler ödem ve sıvı birikimi bulgularının derin öğrenme yöntemleri ile tespit edilmesi
Detection of diabetic macular edema and fluid accumulation findings from optical coherence tomography images by deep learning methods
SALİHA YEŞİLYURT
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ALPER BAŞTÜRK
- Retinal blood vessel segmentation using transfer learning on unet
Unet üzerinden transfer öğrenmeyi kullanarak retınal kan damar segmentasyonu
RAMAZAN KARTAL
Yüksek Lisans
İngilizce
2022
Elektrik ve Elektronik MühendisliğiGaziantep ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. SEMA KAYHAN
- Evrişimli sinir ağları kullanılarak retina görüntülerinin segmentasyonu ve sınıflandırılması
Segmentation and classification of retina images using convolutional neural networks
MALI MOHAMMEDHASAN
Doktora
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. HARUN UĞUZ