Geri Dön

Segmentation of retinal blood vesselsusing a novel fuzzy logic algorithm

Başlık çevirisi mevcut değil.

  1. Tez No: 721939
  2. Yazar: BURAK YILDIRIM
  3. Danışmanlar: DR. BUKET D. BARKANA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: University of Bridgeport
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 63

Özet

Özet yok.

Özet (Çeviri)

In this work, a rule-based method is presented for blood vessel segmentation in digital retinal images. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. Diabetic retinopathy is the most common diabetic eye disease and a leading cause of blindness. Diagnosis of diabetic retinopathy at an early stage can be done through the segmentation of the blood vessels of retina. Many studies have been carried out in the last decade in order to obtain accurate blood vessel segmentation in retinal images including supervised and rule-based methods. This method uses eight feature vectors for each pixel. These features are means and medians of intensity values of pixel itself, first and second nearest neighbor at four directions. Features are used in fuzzy logic algorithm as crisp input. The final segmentation is obtained using a thresholding method. The method was tested on the publicly available database DRIVE and its results are compared with distinguished published methods. Our method achieved an average accuracy of 93.82% and an area under the receiver operating characteristic curve of 94.19% for DRIVE database. Our results demonstrated an average sensitivity of 72.28% and a specificity of 97.04%. The calculated sensitivity and specificity v values for DRIVE database also state that the proposed segmentation method is effective and robust

Benzer Tezler

  1. Computer analysis of retinal images for vessel anomaly detection

    Retina görüntülerinin damar anomali belirlemek amacıyla bilgisayarda analizi

    SHAHAB ASLANI

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Elektrik ve Elektronik MühendisliğiDokuz Eylül Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. HALDUN SARNEL

  2. Retina görüntülerinde bilgisayar destekli damar segmentasyonu

    Computer assisted vessel segmentation from retinal images

    ESİN UYSAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Mühendislik BilimleriAfyon Kocatepe Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ GÜR EMRE GÜRAKSIN

  3. Optik koherens tomografi görüntülerinden diyabetik maküler ödem ve sıvı birikimi bulgularının derin öğrenme yöntemleri ile tespit edilmesi

    Detection of diabetic macular edema and fluid accumulation findings from optical coherence tomography images by deep learning methods

    SALİHA YEŞİLYURT

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolErciyes Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ALPER BAŞTÜRK

  4. Retinal blood vessel segmentation using transfer learning on unet

    Unet üzerinden transfer öğrenmeyi kullanarak retınal kan damar segmentasyonu

    RAMAZAN KARTAL

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik MühendisliğiGaziantep Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. SEMA KAYHAN

  5. Evrişimli sinir ağları kullanılarak retina görüntülerinin segmentasyonu ve sınıflandırılması

    Segmentation and classification of retina images using convolutional neural networks

    MALI MOHAMMEDHASAN

    Doktora

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HARUN UĞUZ