Geri Dön

Kolonoskopi görüntülerindeki poliplerin evrişimli sinir ağları ile tespiti

Detecting polyps in colonoscopy images using convolutional neural networks

  1. Tez No: 737037
  2. Yazar: ERDEM EZER
  3. Danışmanlar: PROF. DR. MERT ERER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Halk Sağlığı, Sağlık Kurumları Yönetimi, Computer Engineering and Computer Science and Control, Public Health, Health Care Management
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: Marmara Üniversitesi
  10. Enstitü: Sosyal Bilimler Enstitüsü
  11. Ana Bilim Dalı: İş Analitiği Ana Bilim Dalı
  12. Bilim Dalı: İş Analitiği Bilim Dalı
  13. Sayfa Sayısı: 66

Özet

Makine öğreniminin bir alt başlığı olan derin öğrenme alanındaki son gelişmeler, kullanım alanının hızla yaygınlaşmasına sebep olmaktadır. Sürücüsüz araçların yolu ve çevredeki nesneleri tespiti, el yazısı ile yazılmış belgelerin tanınması, mobil telefonlarda yüz tanıma gibi geniş bir sahada başarıyla kullanılmaktadır. Sağlık sektöründe ise medikal görüntülerin analizi ile cilt kanserinin erken aşamada teşhisinde, manyetik rezonans görüntülerinden beyin tümörlerinin tespit edilmesinde derin öğrenme yöntemlerinden faydalanılmaktadır. Kanser, vücudun herhangi bir bölgesindeki hücrelerin kontrolsüz bir şekilde büyümesi ile ortaya çıkan ölümcül bir hastalıktır. Dünya Sağlık Örgütü Uluslararası Kanser Araştırma Merkezi (IARC) 2020 verilerine göre dünya çapında en çok ölüme neden olan ikinci kanser türü kolon kanseridir. Kolon kanseri erken aşamada fark edildiğinde çoğunlukla tedavisi mümkün olan bir hastalıktır. Premalign (kanser öncesi) aşamada iken tespit edilmesi halinde hastalığın görülme sıklığının ve ölüm oranının azaltılması ve pahalı tedavilerin önlenmesi olasıdır. Bu çalışmada kalın bağırsak içinde anormal şekilde büyüyerek zamanla kansere dönüşebilen poliplerin tespitinde uzman klinisyene yardımcı olmak amacıyla U-Net mimarisine dayalı Evrişimli Sinir Ağı (CNN) modeli önerilmektedir. Modelin eğitiminde öğrenme transferinin, veri artırmanın ve kayıp fonksiyonunun etkisi incelenmiştir. Kolonoskopi süreci hem hasta hem de doktor açısından zaman alıcı ve yorucudur. Kolonoskopi esnasında bulunması hedeflenen poliplerin CNN ile otomatik tespiti gözden kaçırılan polip sayısını azaltacak, hekimin başka hastalara daha çok zaman ayırabilmesine, kaynakların etkin kullanılmasına imkan verecektir.

Özet (Çeviri)

Recent developments in the field of deep learning, which is a sub-title of machine learning, cause the usage area to become widespread rapidly. It is successfully used in a wide range of fields such as driverless vehicles detecting the road and surrounding objects, recognizing handwritten documents, and face recognition in mobile phones. In the health sector, deep learning methods are used in the early diagnosis of skin cancer with the analysis of medical images, and in the detection of brain tumors from magnetic resonance images. Cancer is a deadly disease that occurs with the uncontrolled growth of cells in any part of the body. According to the World Health Organization International Center for Cancer Research (IARC) 2020 data, colon cancer is the second leading cause of death worldwide. Colon cancer is a disease that is usually treatable when detected at an early stage. It is possible to reduce the incidence and mortality rate of the disease and prevent expensive treatments if it is detected at the premalignant (pre-cancerous) stage. In this study, a U-Net-based Convolutional Neural Network model is proposed to help detect polyps that can grow abnormally in the large intestine and turn into cancer over time. The effects of learning transfer, data augmentation and loss function in the training of the model were examined. The colonoscopy process is time-consuming and tiring for both the patient and the doctor. Automatic detection of polyps targeted to be found during colonoscopy with CNN will reduce the number of missed polyps, allow the physician to spare more time for other patients, and enable the efficient use of resources.

Benzer Tezler

  1. Tıbbi görüntü işlemede kapsül ağlar

    Capsule networks in medical image processing

    AHMET SOLAK

    Doktora

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik MühendisliğiKonya Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. RAHİME CEYLAN

  2. Bilgisayarlı tomografi görüntülerinde üç boyutlu şablonlar kullanılarak kolonik polip tespiti

    The colonic polyp detection using 3d templates in computed tomography colonography

    NİYAZİ KILIÇ

    Doktora

    Türkçe

    Türkçe

    2008

    Elektrik ve Elektronik Mühendisliğiİstanbul Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    PROF. DR. OSMAN NURİ UÇAN

    YRD. DOÇ. DR. ONUR OSMAN

  3. Artificial intelligence assisted prognostic marker determination from colonoscopy and histopathology images for colon polyps

    Kolon polipleri için kolonoskopi ve histopatoloji görüntülerinden yapay zekâ destekli prognostik belirteç tespiti

    REFİKA SULTAN DOĞAN

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAbdullah Gül Üniversitesi

    Biyomühendislik Ana Bilim Dalı

    PROF. DR. BÜLENT YILMAZ

  4. Bilgisayarlı tomografi görüntülerinde kolonik polip tespiti

    Detection of colonic polyps in computed tomographic images

    GÖKALP TULUM

    Doktora

    Türkçe

    Türkçe

    2015

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Haberleşme Ana Bilim Dalı

    YRD. DOÇ. DR. BÜLENT BOLAT