Geri Dön

Implementation of machine learning for the evaluationof mastitis and antimicrobial resistance in dairy cows

Başlık çevirisi mevcut değil.

  1. Tez No: 761224
  2. Yazar: NECATİ ESENER
  3. Danışmanlar: Belirtilmemiş.
  4. Tez Türü: Doktora
  5. Konular: Veteriner Hekimliği, Veterinary Medicine
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2021
  8. Dil: İngilizce
  9. Üniversite: The University of Nottingham
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 296

Özet

Özet yok.

Özet (Çeviri)

Bovine mastitis is one of the biggest concerns in the dairy industry, where it affects sustainable milk production, farm economy and animal health. Most of the mastitis pathogens are bacterial in origin and accurate diagnosis of them enables understanding the epidemiology, outbreak prevention and rapid cure of the disease. This thesis aimed to provide a diagnostic solution that couples Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectroscopy coupled with machine learning (ML), for detecting bovine mastitis pathogens at the subspecies level based on their phenotypic characters. In Chapter 3, MALDI-TOF coupled with ML was performed to discriminate bovine mastitiscausing Streptococcus uberis based on transmission routes; contagious and environmental. S. uberis isolates collected from dairy farms across England and Wales were compared within and between farms. The findings of this chapter suggested that the proposed methodology has the potential of successful classification at the farm level. In Chapter 4, MALDI-TOF coupled with ML was performed to show proteomic differences between bovine mastitis-causing Escherichia coli isolates with different clinical outcomes (clinical and subclinical) and disease phenotype (persistent and non-persistent). The findings of this chapter showed that phenotypic differences can be detected by the proposed methodology even for genotypically identical isolates. In Chapter 5, MALDI-TOF coupled with ML was performed to differentiate benzylpenicillin signatures of bovine mastitis-causing Staphylococcus aureus isolates. The findings of this chapter presented that the proposed methodology enables fast, affordable and effective diagnostic solution for targeting resistant bacteria in dairy cows. Having shown this methodology successfully worked for differentiating benzylpenicillin resistant and susceptible S. aureus isolates in Chapter 5, the same technique was applied to other mastitis agents Enterococcus faecalis and Enterococcus faecium and for profiling other antimicrobials besides benzylpenicillin in Chapter 6. The findings of this chapter demonstrated that MALDI-TOF coupled with ML allows monitoring the disease epidemiology and provides suggestions for adjusting farm management strategies. Taken together, this thesis highlights that MALDI-TOF coupled with ML is capable of discriminating bovine mastitis pathogens at subspecies level based on transmission route, clinical iii outcome and antimicrobial resistance profile, which could be used as a diagnostic tool for bovine mastitis at dairy farms

Benzer Tezler

  1. Makine öğrenme algoritmalarıyla hatalı ürün tahmini

    Prediction of defective product with machine learning algorithms

    ENES ŞANLITÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2018

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    İşletme Mühendisliği Ana Bilim Dalı

    PROF. DR. FERHAN ÇEBİ

  2. Estimating the chance of success and suggestion for treatment in IVF

    Tüp bebek yönteminde tedavi başarı şansını tahmin etme ve tedavi yöntemi önerme

    GİZEM MISIRLI

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Bölümü

    PROF. DR. HALİL ALTAY GÜVENİR

  3. High level synthesis implementation of classification algorithms for breast cancer detection on xilinx FPGAs

    Makine öğrenmesi sınıflandırma algoritmalarının xilinx FPGA üzerinde gerçeklenmesi

    ASLIHAN HACER TÜFEKCİOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik MühendisliğiMarmara Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SALİH BAYAR

  4. Hand gesture recognition for Turkish sign language using electromyography for human-robot interaction

    İnsan-robot etkileşimi için elektromyografi kullanarak Türk işaret dili için el hareketi tanıma

    MUSTAFA SEDDIQI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HATİCE KÖSE

  5. Makine öğrenmesi tabanlı iç ortam sıcaklık kontrolü için bir simülatör yazılımı tasarımı

    Design of a simulator software for machine learning-based indoor temperature control

    AYDIN BOSTANCI

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    PROF. DR. DEVRİM AKGÜN