Implementation of machine learning for the evaluationof mastitis and antimicrobial resistance in dairy cows
Başlık çevirisi mevcut değil.
- Tez No: 761224
- Danışmanlar: Belirtilmemiş.
- Tez Türü: Doktora
- Konular: Veteriner Hekimliği, Veterinary Medicine
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2021
- Dil: İngilizce
- Üniversite: The University of Nottingham
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 296
Özet
Özet yok.
Özet (Çeviri)
Bovine mastitis is one of the biggest concerns in the dairy industry, where it affects sustainable milk production, farm economy and animal health. Most of the mastitis pathogens are bacterial in origin and accurate diagnosis of them enables understanding the epidemiology, outbreak prevention and rapid cure of the disease. This thesis aimed to provide a diagnostic solution that couples Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectroscopy coupled with machine learning (ML), for detecting bovine mastitis pathogens at the subspecies level based on their phenotypic characters. In Chapter 3, MALDI-TOF coupled with ML was performed to discriminate bovine mastitiscausing Streptococcus uberis based on transmission routes; contagious and environmental. S. uberis isolates collected from dairy farms across England and Wales were compared within and between farms. The findings of this chapter suggested that the proposed methodology has the potential of successful classification at the farm level. In Chapter 4, MALDI-TOF coupled with ML was performed to show proteomic differences between bovine mastitis-causing Escherichia coli isolates with different clinical outcomes (clinical and subclinical) and disease phenotype (persistent and non-persistent). The findings of this chapter showed that phenotypic differences can be detected by the proposed methodology even for genotypically identical isolates. In Chapter 5, MALDI-TOF coupled with ML was performed to differentiate benzylpenicillin signatures of bovine mastitis-causing Staphylococcus aureus isolates. The findings of this chapter presented that the proposed methodology enables fast, affordable and effective diagnostic solution for targeting resistant bacteria in dairy cows. Having shown this methodology successfully worked for differentiating benzylpenicillin resistant and susceptible S. aureus isolates in Chapter 5, the same technique was applied to other mastitis agents Enterococcus faecalis and Enterococcus faecium and for profiling other antimicrobials besides benzylpenicillin in Chapter 6. The findings of this chapter demonstrated that MALDI-TOF coupled with ML allows monitoring the disease epidemiology and provides suggestions for adjusting farm management strategies. Taken together, this thesis highlights that MALDI-TOF coupled with ML is capable of discriminating bovine mastitis pathogens at subspecies level based on transmission route, clinical iii outcome and antimicrobial resistance profile, which could be used as a diagnostic tool for bovine mastitis at dairy farms
Benzer Tezler
- Makine öğrenme algoritmalarıyla hatalı ürün tahmini
Prediction of defective product with machine learning algorithms
ENES ŞANLITÜRK
Yüksek Lisans
Türkçe
2018
Bilim ve Teknolojiİstanbul Teknik Üniversitesiİşletme Mühendisliği Ana Bilim Dalı
PROF. DR. FERHAN ÇEBİ
- Estimating the chance of success and suggestion for treatment in IVF
Tüp bebek yönteminde tedavi başarı şansını tahmin etme ve tedavi yöntemi önerme
GİZEM MISIRLI
Yüksek Lisans
İngilizce
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent ÜniversitesiBilgisayar Mühendisliği Bölümü
PROF. DR. HALİL ALTAY GÜVENİR
- High level synthesis implementation of classification algorithms for breast cancer detection on xilinx FPGAs
Makine öğrenmesi sınıflandırma algoritmalarının xilinx FPGA üzerinde gerçeklenmesi
ASLIHAN HACER TÜFEKCİOĞLU
Yüksek Lisans
İngilizce
2024
Elektrik ve Elektronik MühendisliğiMarmara ÜniversitesiElektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. SALİH BAYAR
- Hand gesture recognition for Turkish sign language using electromyography for human-robot interaction
İnsan-robot etkileşimi için elektromyografi kullanarak Türk işaret dili için el hareketi tanıma
MUSTAFA SEDDIQI
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. HATİCE KÖSE
- Makine öğrenmesi tabanlı iç ortam sıcaklık kontrolü için bir simülatör yazılımı tasarımı
Design of a simulator software for machine learning-based indoor temperature control
AYDIN BOSTANCI
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
PROF. DR. DEVRİM AKGÜN