Geri Dön

Derin öğrenme ile paratüberküloz hastalığının patolojik görüntüler üzerinden tanı sisteminin geliştirilmesi

Deep learning based development of diagnostic system of paratuberculosis disease through pathological images

  1. Tez No: 766118
  2. Yazar: NİLGÜN ŞENGÖZ
  3. Danışmanlar: PROF. DR. TUNCAY YİĞİT, PROF. DR. ALİ HAKAN IŞIK
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2022
  8. Dil: Türkçe
  9. Üniversite: Süleyman Demirel Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 95

Özet

Yapay Zeka, tıbbi görüntüleme alanlarında, özellikle histopatolojik görüntüleme düzeyinde büyük umut vaat ediyor. Yine de Yapay Zeka algoritmaları kararlarının ardındaki düşünce süreçlerini tam olarak açıklayamıyor. Bu durum Yapay Zeka uygulamalarının açıklanabilirliği sorununu gündeme getirmiştir. 'Kara Kutu' olarak adlandırılan bu durum sonucunda, verilen görüntülerin nedenlerini belirtmeden basitçe yanıt veren bir algoritmaya dönüşmüştür. Bunu aşmak ve açıklanabilirlik düzeyini artırmak için Açıklanabilir Yapay Zeka (AYZ) konusu gündeme gelmiş ve birçok araştırmacı bu konuda çeşitli çalışmalar yapmıştır. Bu çalışma kapsamında patologlara yardımcı olmak amacıyla Derin Öğrenme algoritması kullanılarak yeni ve orijinal bir veri seti üzerinde çalışılmış ve AYZ uygulamalarından Grad-CAM kullanılarak çıktı sonuçları görselleştirilmiştir. Bu bağlamda çalışılan Derin Öğrenme algoritmalarından VGG-16 %98 oranla ResNet ve ESA ağlarına göre en iyi sınıflandırma doğruluğuna ulaştığından ötürü Açıklanabilir Yapay Zeka algoritması, VGG-16 mimarisi üzerinden gerçekleştirilmiştir. Daha sonra bu görüntüler üzerinde patologlarla detaylı bir anket çalışması yapılmıştır. Hem karar verme süreçleri hem de açıklamalar doğrulanıp, çıktıların doğruluğu test edilmiştir. Bu bağlamda yeni ve orijinal bir veri kümesinde çalışılmıştır ve bu konu üzerinde çalışan patologlara yardımcı bir sistem sunulmuş olup kara verme süreçlerinde etkili ve güvenilir bir algoritma ile destek mekanizması oluşturulmuştur.

Özet (Çeviri)

Artificial Intelligence holds great promise in medical imaging fields, especially at the level of histopathological imaging. And yet, Artificial Intelligence algorithms still cannot fully explain the thought processes behind their decisions. This situation has brought the problem of explainability of Artificial Intelligence applications to the agenda. As a result of this situation, which is called the 'Black Box', it has turned into an algorithm that simply responds without stating the reasons for the images given. In order to overcome this and increase the level of explainability, the subject of Explainable Artificial Intelligence (XAI) has come to the fore and many researchers have conducted various studies on this subject. In the context of this study, in order to help pathologists, a new and original dataset was studied using the Deep Learning algorithm, and the output results were visualized using Grad-CAM, one of the XAI applications. In this context, the Explainable Artificial Intelligence algorithm was implemented over the VGG-16 architecture, since VGG-16, one of the Deep Learning algorithms studied, achieved the best classification accuracy with 98% compared to ResNet and CNN networks. Afterward, a detailed questionnaire study was conducted with the pathologists on these images. Both the decision-making processes and the explanations were verified, and the output's accuracy was tested. In this context, it has been studied on a new and original dataset, and a helpful system has been presented to pathologists working on this subject, and an effective and reliable algorithm and support mechanism has been established in decision-making processes.

Benzer Tezler

  1. Derin öğrenme ile Türkçe sağlık metinleri üzerinde olumsuz anlam tespiti

    Negation detection in Turkish medical texts with deep learning

    ZANA SÖĞÜT

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEge Üniversitesi

    Bilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı

    PROF. DR. OĞUZ DİKENELLİ

  2. Crowd localization and counting via deep flow maps

    Derin öğrenme ile çıkarılan hareket haritaları kullanılarak nesne kalabalıklarının tespiti ve sayımı

    PEDRAM YOUSEFI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. BİLGE GÜNSEL

  3. Face presantation attack detection by deep learning

    Derin öğrenme ile yüz sunum saldırı tespiti

    MUHAMMED SELAMCIOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolManisa Celal Bayar Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MUHAMMET GÖKHAN ERDEM

  4. Classification of knee osteoarthritis severity using deep learning with fully supervised and semi-supervised-based approaches

    Derin öğrenme ile tamamen denetimli ve yarı-denetimli yaklaşım tabanlı diz osteoartrit şiddetinin sınıflandırılması

    İLKNUR AKTEMUR

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İLKAY ÖKSÜZ

  5. Derin öğrenme ile görsel benzerliklerin bulunması ve müşteri sepet analizi ile e-ticaret alışverişleri için ürün önerisi

    Finding visual similarities with deep learning and product recommendation for e-commerce shopping with customer basket analysis

    ESRA PULAT

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Endüstri ve Endüstri MühendisliğiYıldız Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. SELİN SONER KARA