Kümeleme algoritmalarının CPU ve GPU performanslarının analizi
Analysis of CPU and GPU performances of clustering algorithms
- Tez No: 773497
- Danışmanlar: DOÇ. DR. METİN BİLGİN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2022
- Dil: Türkçe
- Üniversite: Bursa Uludağ Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 53
Özet
Teknolojinin ilerlemesi, teknolojideki rekabeti her geçen gün artırmaktadır. Teknolojide ilerleme artarken müşterileri ve kullanıcıları memnun etmek güçleşmektedir. Çeşitli teknolojik aygıtlar sebebiyle üretilen veri miktarı artmakta bu da firmaların eldeki verileri analiz etmeleri için farklı metotlara yönelmelerine sebebiyet vermektedir. Günümüz dünyasında verilerin analiz edilmesi ve yorumlanması çok önemli olduğundan bu işlemi elle yapmak yerine makinelere yaptırma gereği ve ihtiyacı doğmuştur. Eldeki verilerin etiketlerinin bilinmediği durumlarda bunları analiz edebilmek adına kümeleme algoritmalarından yararlanılmaktadır. Kümeleme algoritmaları verileri gruplara ayırmaktadır ve bu sayede verilerin analiz edilmesi, yorumlanması kolay hale getirilmektedir. Bu tez çalışmasında, mevcutta kullanılan beş farklı kümeleme algoritmasının CPU ve GPU üzerindeki performansları araştırılmış ve bunları tespit etmeye yönelik deneysel çalışmalar gerçekleştirilmiştir. Kümeleme algoritmalarının performanslarını ölçebilmek adına yapılan deneysel çalışmalarda e-postalardan oluşan Enron veri kümesi kullanılmıştır. Çalışmada kümeleme algoritmaları olarak; model bazlı Cobweb, yoğunluk bazlı Dbscan, grid bazlı Clique, bölümlemeli K-Means, hiyerarşik olarak ise Birch algoritmaları seçilmiştir. Deneysel çalışmalar için gerekli ortam Python dilinde Google Colab üzerinde gerçekleştirilmiştir. Deneysel çalışma sonuçları grafikler ve tablolar ile ifade edilerek analiz sonuçları sunulmuştur.
Özet (Çeviri)
The advancement of technology increases the competition in technology area day by day. As technology advances, it becomes more difficult to satisfy customers and users. The amount of data produced with the help of various technological devices is increasing, which causes companies to turn to different methods to analyze the data at hand. Since the analysis and interpretation of data is very important in today's world, the need and need to have this process done by machines has arisen instead of doing it manually. In cases where the labels of the available data are not known, clustering algorithms can be used to analyze them. With the help of clustering algorithms, the data can be grouped and made easier to analyze and interpret on this occasion. In this thesis, the performances of five different clustering algorithms currently used on CPU and GPU were investigated and experimental studies were carried out to detect them. In order to measure the performance of clustering algorithms, a dataset consisting of e-mails that name is Enron was used in experimental studies. As clustering algorithms in the study; model based Cobweb, density based Dbscan, grid based Clique, segmented K-Means, hierarchical Birch were selected. The necessary environment for the experimental studies was carried out on Google Colab in Python language. Experimental study results are expressed with graphs and tables, and analysis results are presented.
Benzer Tezler
- Merkez tabanlı kümeleme algoritmalarının karşılaştırılması
The comparison a center-based clustering algorithms
AYSEL BİLGİN
Yüksek Lisans
Türkçe
2008
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. NEVCİHAN DURU
- Çok boyutlu uzayda görsel veri madenciliği için üç yeni çatı tasarımı ve uygulamaları
Three new frameworks for the design and application of visual data mining in high dimensional space
TURGAY TUGAY BİLGİN
Doktora
Türkçe
2007
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara ÜniversitesiElektronik-Bilgisayar Eğitimi Ana Bilim Dalı
PROF.DR. ALİ YILMAZ ÇAMURCU
- Core network anomaly detection using the LSTM model and comparison with various unsupervised learning methods
Telekomünikasyon merkezi şebekelerinde LSTM model ile anomali tespiti ve bazı denetimsiz öğrenme metotları ile kıyaslanması
SAMED ÇALIK
Yüksek Lisans
İngilizce
2025
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiBüyük Veri ve İş Analitiği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET ALİ ERGÜN
- Sürü zekâsına dayalı metasezgisel algoritmalar ile retinal damar segmentasyonu
Retinal vessel segmentation by using swarm intelligence based metaheuristic algorithms
HAKAN DURAN
Doktora
Türkçe
2025
Mekatronik MühendisliğiErciyes ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MEHMET BAHADIR ÇETİNKAYA
- EKG verileri için gerçek zamanlı veri analitiği mimarisi
Real time data analytics architecture for ECG
NUR BANU OĞUR
Yüksek Lisans
Türkçe
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya ÜniversitesiBilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı
PROF. DR. CELAL ÇEKEN