EEG işaretlerinin klasik ve modern yöntemlerle önişlenmesi ve sınıflandırılması
Classification of EEG signals by using classical and modern preprocessing methods
- Tez No: 168050
- Danışmanlar: PROF.DR. ETEM KÖKLÜKAYA
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Electroencephalogram (EEG), Epilepsy, Spectral Analysis, Time- Frequency Methods
- Yıl: 2005
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 140
Özet
ÖZET Anahtar Kelimeler : Elektroensefalogram (EEG), Epilepsi, Spektral Analiz, Zaman- Frekans Yöntemleri, Yapay Sinir Ağlan. EEG' de epileptik deşarjların belirlenmesi, epilepsi tanısında önemli bir konudur. Bu tezde, EEG işaretleri farklı ön işleme yöntemleri ile analiz edilerek, öznitelik vektörleri elde edilmiş ve bu öznitelik vektörleri çok katmanlı algılayıcı yapay sinir ağı temelli sınırlandırıcıya, sınıflama için giriş olarak uygulanmıştır. Önişleme için klasik, parametrik ve alt uzay yöntemleri kullanılmıştır. EEG işaretlerinin güç spektral yoğunluğunun elde edilmesi, için klasik yöntemlerden periodogram yöntemi kullanılmıştır. Aralarındaki farkı görmek ve kıyaslama yapabilmek için EEG işaretleri farklı parametrik yöntemlerle analiz edilerek, karşılaştırılmıştır. Yine bu işlemler için alt uzay yöntemlerinden MUSIC ve özvektör yöntemleri ile zaman-frekans yöntemleri de çalışmada kullanılan önişleme yöntemlerdendir. Sınıflandırıcı önişleme yöntemine bağlı olarak 90%'lar civarında kabul edilebilir bir basan elde etmiştir. Yapay sinir tabanlı sınıflandırıcı tam sisteminin test performansı başarılı olup, bu sistemin klinik çalışmalarında kullanılabileceği görülmüştür. Sonuçlar bölümünde geliştirilen tanı sisteminin algoritması verilerek, sınıflandırma sisteminin başarısı ve ayrıntılı sonuçları verilmiştir. XIV
Özet (Çeviri)
CLASSIFICATION OF EEG SIGNALS BY USING CLASSICAL AND MODERN PREPROCESSING METHODS SUMMARY
Benzer Tezler
- EEG işaretlerinin epileptik nöbet kestiriminde modern yöntemlerle analizi ve sınıflandırılması
The analysis and classification of EEG signals in the epileptic seizure prediction by modern methods
ERHAN BERGİL
Doktora
Türkçe
2018
Elektrik ve Elektronik MühendisliğiSakarya ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MEHMET RECEP BOZKURT
- Elektroensefalografi işaretlerinin makine öğrenmesi algoritmaları ile incelenmesi ve sınıflandırılması
Analysis and classification of electroencephalography signal using machine learning algorithms
ŞULE BEKİRYAZICI
Yüksek Lisans
Türkçe
2020
Elektrik ve Elektronik MühendisliğiBursa Uludağ ÜniversitesiElektronik Mühendisliği Ana Bilim Dalı
PROF. DR. GÜNEŞ YILMAZ
- Classification of the motor EEG signals by using deep neural networks
Derin sinir ağları kullanarak motor EEG sinyallerinin sınıflandırılması
LEYLA ABILZADE
Yüksek Lisans
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilişim Uygulamaları Ana Bilim Dalı
PROF. DR. TAMER ÖLMEZ
- Biyolojik işaretler için adaptif gürültü azaltma sistemi
Adaptive noise canceller for biological signals
AYDIN AKAN
Yüksek Lisans
Türkçe
1991
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiPROF.DR. ERTUĞRUL YAZGAN
- Biyomedikal İşaret ve Görüntülerde Görgül Kip Ayrışımı
Empirical Mode Decomposition on Biomedical Signals and Images
ÖMER FARUK KARAASLAN
Yüksek Lisans
Türkçe
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. GÖKHAN BİLGİN