Geri Dön

Kesirli PID tasarım yöntemi ve klasik PID ile karşılaştırmalar

Fractional PID design methods and comparisons with classical PID

  1. Tez No: 252306
  2. Yazar: ESRA GÖKTÜRK
  3. Danışmanlar: PROF. DR. İBRAHİM EKSİN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2009
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 94

Özet

Bu çalışmada, kesir dereceli matematikten yola çıkılarak, kesir dereceli sistem ve PID kontrolörler tanıtılmakta ve klasik (tamsayı dereceli) PID kontrolörle kıyaslanarak avantaj ve dezavantajları incelenmektedir.Tamsayı dereceli PID'den farklı olarak; kesir dereceli PID (PI?D?) kontrolör kesir dereceli bir integratör ve kesir dereceli türevden oluşur, hem tamsayı dereceli hem de kesir dereceli modellenen sistemler üzerinde uygulanabilir. Bu çalışmada uygulamalar lineer sistemler üzerine yapılmaktadır.Sürekli kesir dereceli transfer fonksiyonları irrasyoneldir, ayrık kesir dereceli transfer fonksiyonları ise limitsiz bir belleğe sahiptir. Bu yüzden kesir dereceli PID kontrolörleri uygulanabilir hale getirmek için öncelikle tamsayı dereceli yaklaşımlar yapmak gerekmektedir. Tamsayı dereceli yaklaşımlar elde etmek için hem sürekli hem ayrık modellerde bir çok yöntem önerilmektedir.Kesir dereceli PID kontrolörü tasarlamak için klasik PID tasarımında kullanılan genel arama yöntemlerin bir çoğu kullanılabilir. Klasik (tamsayı derceli) PID kontrolör genel olarak üç adet (Kp, Ki, Kd) parametreden oluşurken, kesirli PID'de parametre sayısı beşe (Kp, Ki, Kd, ?, ?) çıkmaktadır. Beş parametrenin kontrolöre esneklik ve dayanıklılık getirdiği iddia edilmektedir. Buradan yola çıkarak bu çalışmada esneklik için kesir dereceli PI kontrolörde ?'nın değişimine bağlı kapalı çevrim sistemin kararlılık sınırları, dayanıklılık için ise belirsiz sistem parametreleri ve gürültü gibi çevresel etkenlere karşı sistem davranışları incelenmektedir.Kesir dereceli integral ve türev sisteme nonlineerlik getirdiği için, analitik yöntemlerle tasarım yapmak ise oldukça güçtür. Bunun yanında farklı tasarım yöntemleri de araştırılmaktadır.

Özet (Çeviri)

In this study, starting from fractional order mathematics, fractional order systems and PID controllers are introduced and compared with integer order PID controllers.Differently from an integer order PID; a fractional order PID (PI?D?) controller consists of a fractional order integrator and a fractional order derivative and can be applied to both integer order and fractional order modeled systems. In this study the applications are on lineer systems.Continues fractional order transfer functions are irrational and discrete fractional order transfer functions have unlimited memories. So firstly integer order approximations have to be done in order to make the fractional order controllers applicable. There has been suggested several methods to make the integer order approximations.Most of the general searching algorithms can also be used to design fractional order controllers. Classical (integer order) PID controller generally consists of three parameters (Kp, Ki, Kd), but in fractional order one, the number of parameters increases to five (Kp, Ki, Kd, ?, ?). It is asserted that, five parameter provides more flexibility and stregth to the controller. From this point, in this study stability boundaries of the closed loop system depending on the change of ? in fractional PI for flexibility and depending on the uncertain parameters of system and enviromental factors like noises for strength is concerned. It is very hard to design fractional order controllers with analytical methods that fractional order derivative and integral adds nonlinearity to the system. Besides different kinds of design methods are under search.

Benzer Tezler

  1. A new anti-windup strategy for fractional order PI controllers

    Kesirli mertebe PI kontrolörler için yeni bir integral yığılması karşıtı strateji

    MUHAMMED ALİ ELAYDIN

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. DR. MÜJDE GÜZELKAYA

  2. A model-free fractional-order PID tuning method based on an improvement of particle swarm optimization

    Parçacık sürüsü optimizasyonunun geliştirilmesine dayalı modelden bağımsız kesirli dereceli PID ayar yöntemi

    DENİZ SEVİŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    Elektrik ve Elektronik MühendisliğiBoğaziçi Üniversitesi

    Sistem ve Kontrol Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YAĞMUR DENİZHAN

  3. Multi-objective optimization based fractional order PID controller design

    Çok amaçlı optimizasyon tabanlı kesirli mertebeden PID kontrolörün tasarımı

    EDA BUDAK

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    PROF. MÜJDE GÜZELKAYA

  4. Kesirli mertebeden kontrolör analizi ve tasarım

    Analysis and design of fractional order controller

    HAKAN ERSOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiYıldız Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. UMUT ENGİN AYTEN

    DR. ÖĞR. ÜYESİ ASLIHAN ÖZAKIN

  5. Histerisis yapısına sahip olan sistemler için kontrol tasarımları

    Control designs for systems that have hysteresis structure

    BEYZA BİLLUR İSKENDER

    Doktora

    Türkçe

    Türkçe

    2011

    MatematikBalıkesir Üniversitesi

    Matematik Ana Bilim Dalı

    YRD. DOÇ. DR. NECATİ ÖZDEMİR