Geri Dön

Feature weighting algorithm for decision support system of innovation policies

İnovasyon politikaları karar destek sistemi için öznitelik ağırlıklandırılması

  1. Tez No: 259029
  2. Yazar: CANER HAMARAT
  3. Danışmanlar: YRD. DOÇ. DR. KEMAL KILIÇ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Endüstri ve Endüstri Mühendisliği, Industrial and Industrial Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2009
  8. Dil: İngilizce
  9. Üniversite: Sabancı Üniversitesi
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Endüstri Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 91

Özet

Bu tezin temel amacı inovasyon yönetimi için Karar Destek Sistemi çerçevesi geliştirmektir. İnovasyon belirleyicileri inovasyon performansını belirleyen özniteliklerdir. Bu nedenle, öznitelik altkümesi seçimi önemli bir konu olmaktadır. Karar Destek Sistemi'nin çekirdeğini oluşturmak için Benzetimsel Tavlama ve Genetik Algoritması olmak üzere iki algoritma önerilmiştir.Temel amaçlar ilgili özniteliklerin belirlenmesini sağlamak ve tahmin doğruluğunu arttırmaktır. Önerilen algoritmalarımız İris ve Concrete Compressive Strength referans dataları üzerinde kontrol edilmiştir. Bundan sonra, önerilen algoritmalar inovasyon datasına uygulanmıştır. Önerilen algoritmaların karşılaştırılması ve yorumlanması için elde edilen öznitelik ağırlıkları ve tahmin doğruluk seviyeleri sunulmuştur.

Özet (Çeviri)

The main aim of this thesis is to develop a Decision Support System (DSS) framework for innovation management. Determinants of innovation are the features that determine the innovation performance. For this reason, feature subset selection problem becomes an important issue. In order to construct the core of the DSS, we proposed two algorithms, which are Simulated Annealing and Genetic Algorithm.Determination of relevant features and prediction accuracy are the main objectives. Our proposed algorithms have been checked on two different data sets, Iris and Concrete Compressive Strength. After validation, algorithms have been implemented on innovation performance data. Feature weights that are obtained and prediction accuracies are presented for comparing and interpreting our algorithms.

Benzer Tezler

  1. Mekansal analiz teknikleri ile çok kriterli karar verme yaklaşımı kullanılarak raylı sistem güzergah analizi

    Rail system route analysis using multi criteria decision making with spatial analysis techniques

    BERNA ÇALIŞKAN

    Doktora

    Türkçe

    Türkçe

    2023

    Ulaşımİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ OSMAN ATAHAN

  2. Yüz görüntülerinden kırışıklık tespiti ve sınıflandırılmasıyla yaş tahmini algoritması geliştirilmesi

    Development of age estimation algorithm by determination and classification of wrinkle from face images

    ŞULE BERNA AYAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    BiyomühendislikTOBB Ekonomi ve Teknoloji Üniversitesi

    Biyomedikal Mühendisliği Ana Bilim Dalı

    PROF. DR. OSMAN EROĞUL

  3. Kullanıcı destek sistemlerinde yardım biletlerinin otomatik sınıflandırılması

    Automatic classification of help tickets in user support systems

    MÜCAHİT ALTINTAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. AHMET CÜNEYD TANTUĞ

  4. Deniz taşımacılığında emniyet esaslı akıllı gemi denetim analitiği

    Safety based intelligent ship inspection analytics for maritime transportation

    SEYİD MAHMUD ESAD DEMİRCİ

    Doktora

    Türkçe

    Türkçe

    2023

    Deniz Bilimleriİstanbul Teknik Üniversitesi

    Deniz Ulaştırma Mühendisliği Ana Bilim Dalı

    DOÇ. DR. KADİR ÇİÇEK

  5. Natural ventilation of high-rise buildings a methodology for planning with different analysis tools and case-study integration

    Çok katlı binalarda doğal havalandırma farklı analiz araçları ve örnek alan entegrasyonu ile planlama için bir yöntem

    TOBIAS SCHULZE

    Doktora

    İngilizce

    İngilizce

    2015

    Enerjiİstanbul Teknik Üniversitesi

    Mimarlık Ana Bilim Dalı

    Prof. Dr. AYŞE ZERRİN YILMAZ

    PROF. DR. MARCO PERINO