Geri Dön

Genetik algoritmalar ile portföy performans eniyilemesi için teknik analiz göstergesi seçimi

Selection of technical analysis indicator for optimizing porfolio performance with genetic algorithms

  1. Tez No: 289988
  2. Yazar: UMUR ERKUT
  3. Danışmanlar: YRD. DOÇ. DR. AHMET MURAT ÖZBAYOĞLU
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 152

Özet

Teknik analiz göstergesi kullanımı, finans tahmini yaparken en çok başvurulan teknik analiz yöntemlerinden biridir. Genellikle bu göstergeler, teknik analiz esnasında alım ve satım kuralları oluşturmak için kullanılırlar. Bazı istatistiksel analizler sonucu, teknik göstergeler için belirli anahtar parametre değerleri bulunmuştur. Bu değerler genellikle yuvarlanmış ve sade sayılardan oluşmaktadır. Böylece oluşturulan kurallar daha kolay hatırlanabilir olmaktadır. Ancak, bu kurallar yatırımcıya değişen piyasa koşullarında nasıl davranması gerektiği konusunda bir bilgi vermez. Hangi teknik gösterge kuralının, hangi durumda ve hangi değerler ile kullanılması gerektiğini bilmeyen bir yatırımcı, yanlış bir kural seçimi sonucu çok büyük kayıplar yaşayabilir. Bu tez çalışmasında birkaç farklı ETF performansı farklı teknik göstergeler kullanılarak analiz edilmiştir. Teknik gösterge parametreleri genetik algoritmalar yardımı ile eniyilenmiş, böylece analiz edilen her teknik gösterge için ETF'ler üzerinde en iyi performansı veren parametreler elde edilerek kurallar oluşturulmuştur. Tez çalışması süresince kullanılan her teknik gösterge için, farklı piyasa şartları (yükselen piyasa trendi ve alçalan piyasa trendi) göz önünde bulundurulmuş ve bir ETF veya birden fazla ETF aynı anda kullanılarak en iyi performansı veren kurallar üretilmiştir. Üretilen kurallar test verileri üzerinde uygulanarak, kuralların başarımları hesaplanmıştır. Ayrıca, daha iyi performans elde edebilmek için tek bir teknik gösterge için kural oluşturmak yerine farklı teknik göstergelerin birleştirilmesiyle yeni kurallar üretilmeye çalışılmıştır.

Özet (Çeviri)

Technical indicators are widely used in stock market forecasting, mostly to trigger the buy/sell rules in the technical analysis. Through some statistical analysis some key values for several indicator parameters are obtained. These values are generally adjusted to provide simple, round numbers, so they become part of easy-to-remember rules. However, it is not clear how changing market conditions affect them. An investor who does not know which technical indicator is used in which conditions and with which values, can experience big losses due to inappropriate rule selection. In this study, the performances of several different ETFs are analyzed using different technical indicators. The indicator parameters are optimized against portfolio performance using genetic algorithms thus, optimum rules are generated with those parameters. During the study, different analyses are implemented according to different market conditions (uptrend or downtrend) with using an ETF or a basket of ETFs for each technical indicator used in the study. Generated rules are tested in different time period and the performance of each rule is calculated. Moreover, new rules are generated with the method of combining different technical indicators in a rule to get higher profits instead of using only one indicator in a rule.

Benzer Tezler

  1. Evrimsel algoritmalar ile yayılma stratejisi opsiyon çiftlerinin eniyilemesine bağlı iki aşamalı bir alım satım modeli geliştirilmesi

    Developing a two level option trading strategy based on option pair optimization of spread strategies with evolutionary algorithms

    MUSTAFA UÇAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTOBB Ekonomi ve Teknoloji Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. AHMET MURAT ÖZBAYOĞLU

  2. Yapay arı kolonisi algoritması ile sharpe performans oranına dayalı portföy optimizasyonu: BIST 30 uygulaması

    Potfolio optimization based on sharpe performance ratiowith artificial bee colony algorithm: BIST 30 application

    AZİZE ZEHRA ÇELENLİ BAŞARAN

    Doktora

    Türkçe

    Türkçe

    2018

    EkonomiOndokuz Mayıs Üniversitesi

    İstatistik Ana Bilim Dalı

    PROF. DR. VEDİDE REZAN USLU

  3. Portföy seçiminde algoritmik yaklaşım: Portföyde uluslararası çeşitlendirmeye yönelik bir çalışma

    Algoritmic approach in portfolio selection: A study towards international diversification in portfolio

    MAHAMMAD CHARKASOV

    Doktora

    Türkçe

    Türkçe

    2024

    Ekonometriİstanbul Üniversitesi

    İşletme Ana Bilim Dalı

    PROF. DR. VEDAT SARIKOVANLIK

  4. Yapay zeka yöntemleri ile karşılaştırmalı portföy optimizasyonu ve İMKB üzerine bir uygulama

    Comparative portfolio optimization with artificial intelligence methods and an application with İMBK

    YİĞİT DEMİRELLİ

    Doktora

    Türkçe

    Türkçe

    2014

    EkonomiMarmara Üniversitesi

    İktisat Ana Bilim Dalı

    PROF. DR. NURDAN ASLAN

  5. Dinamik ortamlar için istatiksel metotlar kullanan çoklu evrimsel algoritmalar

    Multiploid evolutionary algorithms with statistical methods for dynamic environments

    EMRULLAH GAZİOĞLU

    Doktora

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞE ŞİMA UYAR