Geri Dön

An alternative image processing approach for the viability of cells by light microscopy

Işık mikroskobu kullanarak hücre sayımı için alternatif bir görüntü işleme yaklaşımı

  1. Tez No: 290238
  2. Yazar: AKIN ÖZKAN
  3. Danışmanlar: YRD. DOÇ. HAKAN TORA, YRD. DOÇ. S. BELGİN İŞGÖR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Biyoloji, Elektrik ve Elektronik Mühendisliği, Biology, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 69

Özet

Hücre sayımı ve bu hücrelerin sınıflandırılması için kullanılan yöntemler mikro biyoloji ve hücre biyolojisi alanında önemli bir yer tutmaktadır. En temel sayma mikroskop aracılığıyla Hemositometre kullanılarak insan tarafından yapılır. Bu süreçte hücre sayısı ve canlılığını belirlemek için kullanılan en ekonomik ve en yaygın teknik boya dışlama yöntemidir. Bu çalışmada, hücre canlı-ölü ayrımı yapabilen yeni bir görüntü tabanlı hücre sayımı yaklaşımı (NIBA-C) önerilmiştir. Önerilen yöntemin başarısını değerlendirmek için aynı görüntüler, yöntem ile elde edilen değerler klasik boya dışlama yöntemi ile elde edilen sonuçlar ile karşılaştırılmıştır. Yöntemi segmentasyon ve ardından görüntülerin sınıflandırılması oluşturur. Segmentasyon aşamasında Hough Dönüşümü kullanılmıştır. Yapay Sinir Ağları hücre-hücre olmayan ve canlı-ölü hücre görüntü sınıflandırmasında kullanılmıştır.Bu çalışmada; önerilen yöntem NIBA-C %70 in üzerinde yerbulma ve %50 üzerinde canlı ölü ayrımı yapabilme yetenegi sergilemiştir.

Özet (Çeviri)

The methods to determine the amount and viability of cells play an important role in the field of microbiology and cell biology. The basic cell counting process is through microscopic analysis using hemocytometer, performed by a technician. In this process, the most economical and widely used technique is dye-exclusion method to determine cell number and viability. In this study, a novel image based approach for cell counting (NIBA-C) is proposed with a capability of distinction between alive from dead during the process. For evaluating the success of proposed method, the results obtained by the method are compared with microscopic cell viability count by virtue of classical dye-exclusion method. The method depends first on segmentation of the cells and then classification of them. Segmentation of cell images is achieved using Hough Transform. Artificial Neural Network is used to distinguish cell images from non-cells and dead cell images from alive cells.In this study, it is concluded that the cell analysis by NIBA-C accomplishes 70 % more accuracy in finding the correct location of the cells, and more than 50% reliable in defining viable cells in comparison with the classical cell count method based on dye-exclusion.

Benzer Tezler

  1. Videolarda devinim ve ivme büyütme yöntemleri

    Motion and acceleration magnification methods in videos

    REYHAN GÜRLEYEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. TAYFUN AKGÜL

  2. Güvenlik kameralarındaki yüz görüntülerinin süper çözünürlüklenetleştirilmesi

    Face enhancement in surveillance systems using super-resolutiontechniques

    ALİ HÜSAMEDDİN ATEŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HÜSEYİN ESKİ

  3. Yüksek mekansal çözünürlüklü uydu/uçak platformlu görüntüler ve CBS teknolojisi kullanılarak Van-Erciş depremi sonrası bina hasar tespiti

    Determination of building damage after Van-Ercis earthquake by using very high resolution satellite/aircraft platforms and GIS technology

    ASLI SABUNCU

    Doktora

    Türkçe

    Türkçe

    2018

    Jeodezi ve Fotogrametriİstanbul Teknik Üniversitesi

    Geomatik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYŞE FİLİZ SUNAR

  4. Deep learning approaches for hailstorm detection and forecasting using CNN and LSTM algorithms: Comparative evaluation of radar products

    Derin öğrenme yaklaşımlarıyla dolu fırtınası tespiti ve tahmini için CNN ve LSTM algoritmalarının kullanılması: Radar ürünlerinin karşılaştırmalı değerlendirmesi

    NAHİT ÇATMADIM

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    İklim ve Deniz Bilimleri Ana Bilim Dalı

    PROF. DR. MEHMET SİNAN ÖZEREN