Geri Dön

Makine öğrenmesi yöntemleri ile glokom hastalığının teşhisi

Diagnosis of glaucoma by machine learninhs methods

  1. Tez No: 315886
  2. Yazar: ŞERİFE HACİEFENDİOĞLU
  3. Danışmanlar: PROF. DR. HAKAN IŞIK
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: Türkçe
  9. Üniversite: Selçuk Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Bilgisayar Sistemleri Eğitimi Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 87

Özet

Glokom günümüzde göz hastalıkları içinde en sinsi hastalık olarak kabul edilen ve ilerlediği takdirde tehlikeli sonuçlar doğuran bir rahatsızlıktır. Körlüğe kadar götüren bu hastalık, genellikle göz içi sıvısının göz kanallarından boşalamadığı durumlarda ortaya çıkar ve göz içindeki basıncın(GİB) artması ile göz arkasındaki sinirlerin bu basınçtan ötürü zarar görmesi şeklinde gelişir.Bu çalışmadaki amaç söz konusu hastalığın göz sinirleri hasar görmeden önce teşhis edilebilmesi ve dünyada körlük nedenleri arasında ilk sıralarda yer alan hastalığın tahmin edilebilmesidir. Çalışmada Pamukkale Üniversitesi Göz Hastalıkları Anabilim Dalından alınan hasta bilgileri kullanılmıştır.Bu çalışmada makine öğrenmesi sınıflandırma yöntemlerinden 3 önemli yöntem olan Destek Vektör Makineleri, Yapay Sinir Ağları ve Karar Ağaçları kullanılarak glokom hastalığı başlangıç safhasında teşhisi için sınıflandırma yapılmış ve birbirleri ile karşılaştırılmıştır. Adı geçen makine öğrenmesi yönetmelerinin performansları X-Validation ile belirlenmiş ve en yüksek sınıflandırma başarısının Destek Vektör Makineleri ile elde edileceği görülmüştür.

Özet (Çeviri)

Glaucoma is a disease that accepted the most insidious today in the eye diseases and if the disease progresses, it occurs dangerous consequences. This disease leading to blindness usually occurs when the intraocular fluid could not cum from eye channels and develops by increasing intraocular pressure(IOP) and the back of eye nerve damage due to this pressure.Aim of this study, diagnosis the disease before the eye nerves damaged and predicts the disease that causes of blindness in the first place among the world. The study used patient data from Pamukkale University Ophthalmology Department.In this study, three important method in machine learning classification methods, Support Vector Machines, Artificial Neural Networks and Decision Trees were used to make the classification for the diagnosis of early stage of glaucoma disease and compared with each other. Performance of the machine learning methods determined by X-validation and to obtain the highest classification success observed with Support Vector Machines

Benzer Tezler

  1. Göz hastalıklarının görüntü işleme ve derin öğrenme yöntemleriyle otomatik tespiti

    Automatic detection of eye diseases using image processing and deep learning methods

    MURAT FIRAT

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankırı Karatekin Üniversitesi

    Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SEDA ŞAHİN

  2. Makine öğrenmesi yöntemleri ile kanser hastalığı teşhisi

    Cancer disease diagnosis with machine learning methods

    EBRU AYDINDAĞ BAYRAK

    Doktora

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-Cerrahpaşa

    Mühendislik Bilimleri Ana Bilim Dalı

    PROF. DR. PINAR KIRCI

    DR. ÖĞR. ÜYESİ TOLGA ENSARİ

  3. Makine öğrenmesi yöntemleri ile kripto paraların gelecekteki tahmini

    Future prediction of cryptocurrencies with machine learning methods

    ELİF DİLASA KURT

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. BANU DİRİ

    DR. AHMET ELBİR

  4. Makine öğrenmesi yöntemleri ile kara askeri araçların tespit ve sınıflandırılması

    Detection and classification of land military vehicles with machine learning methods

    ANIL AKBALIK

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiDüzce Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. FERZAN KATIRCIOĞLU

  5. Makine öğrenmesi yöntemleri ile hibrit ve kompozit ZA-27 alaşımlarının aşınma davranışlarının karşılaştırmalı analizi

    Comparative analysis of wear behavior of hybrid and composite ZA-27 alloys using machine learning methods

    SENA NUR ADIYAMAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Endüstri ve Endüstri MühendisliğiSakarya Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÜLTEKİN ÇAĞIL