Geri Dön

Protein etkileşimlerinin tahmininde pozitif etiketlenmemiş öğrenme

Positive unlabeled learning for deriving protein interaction networks

  1. Tez No: 316534
  2. Yazar: CUMHUR KILIÇ
  3. Danışmanlar: YRD. DOÇ. DR. MEHMET TAN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Biyoloji, Computer Engineering and Computer Science and Control, Science and Technology, Biology
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 61

Özet

Bir veri kümesindeki örneklerin belli bir özelliğe sahip olup olmayışlarına göre etiketlendirilmeleri işlemine ikili sınıflandırma adı verilir. Bir ikili sınıflandırıcı eğitebilmek için, genel yaklaşımda, hem pozitif hem de negatif örnekler içeren bir eğitim verisine ihtiyaç duyulur. Ancak bazı çalışma alanlarında negatif örneklerin elde edilmesi zor, hatta imkansız olabilir. Bu durumlarda veri kümesi sadece pozitif örnekler ve üye oldukları sınıfların belirlenmesi hedeflenen etiketlenmemiş örneklerden oluşur. Bu tür problemlere bir örnek protein-protein etkileşim ağlarının tahminidir.Bir canlı vücudunda hayati işlemlerin devamlılığı proteinlerin çalışmasına bağlıdır ve proteinler bu işlemler sırasında birbirleriyle etkileşime girerler. Hangi proteinlerin birbirleriyle etkileştiğinin bilinmesi tıbbi açıdan önemli bir bilgidir. Proteinlerin etkileştiği laboratuar deneyleri ile tespit edilebilirken, aksi durum kesin bir şekilde belirlenemez. Deneyler sırasında bir protein çiftinin etkileştiğine şahit olunmaması, bu çiftin başka bir zaman ve durumda etkileşmeyeceğinin kanıtı olamaz.Bu çalışmamızda negatif eğitim verisinin mevcut olmadığı bu durumlarda kullanılabilinecek olan algoritmaları özetledik ve bu algoritmaların bir kısmını protein-protein etkileşimlerinin tahmininde kullanarak test edip karşılaştırdık. Böylece protein-protein etkileşim ağlarının tahmininde kullanılabilecek veya bu işlem için ümit vadeden algoritmaları belirledik.

Özet (Çeviri)

Binary classification is the process of labeling the members of a given data set on the basis of whether they have some property or not. To train a binary classifier, normally one needs two sets of examples from each group, usually named as positive and negative examples. However, in some domains, negative examples are either hard to obtain or even not available at all. In these problems, data consist of positive and unlabeled examples. An example to this kind of problems is derivation of protein-protein networks.Biological processes in a living organism depend on proteins and mostly interactions of proteins. It is important to determine which proteins interact to understand how an organism survives. While it is possible to derive by experiments that two proteins interact with each other, it is much harder to conclude that they do not. Even if we do not observe the interaction of two proteins during an experiment, they may interact in a different time or condition.In this thesis we first present a survey of algorithms which can handle such problems, and then provide a comparison of some of these algorithms on the protein-protein interaction derivation problem by using the available (positive) interaction information. Thus we identify which algorithms can be used or have potential to be used for deriving protein-protein interaction networks.

Benzer Tezler

  1. A computational approach for predicting host specificity of adenoviruses

    Adenovirüslerin konak özgüllüğünü tahmin etmede kullanılacak bir hesaplama yöntemi

    ONUR CAN KARABULUT

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMuğla Sıtkı Koçman Üniversitesi

    Biyoenformatik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BARIŞ ETHEM SÜZEK

  2. Predicting the binding affinities of drug-protein interaction by analyzing the images of binding sites

    Bağlanma alanlarının görüntülerini inceleyerek ilaç-protein etkileşiminin bağlanma eğiliminin tahmin edilmesi

    ÖZLEM ERDAŞ

    Doktora

    İngilizce

    İngilizce

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. FERDANUR ALPASLAN

    PROF. DR. MEHMET ERDEM BÜYÜKBİNGÖL

  3. Dynamic mapping of protein interactions in cancer

    Kanserde protein etkileşimlerinin dinamik haritalanması

    GİZEM GÜLFİDAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2018

    BiyomühendislikMarmara Üniversitesi

    Biyomühendislik Ana Bilim Dalı

    DOÇ. DR. KAZIM YALÇIN ARĞA

  4. A novel structural protein-protein interaction network model: Its applications on drug off-target prediction and genotype-phenotype linkage

    Yeni bir yapısal protein-protein etkileşimi ağ modeli: Bu modelin ilaç uzak-hedeflerinin tahmininde ve genotip-fenotip bağlantısı kurmaktaki uygulamaları

    HATİCE BİLLUR ENGİN ARAS

    Doktora

    İngilizce

    İngilizce

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKoç Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ATTİLA GÜRSOY

    PROF. DR. ZEHRA ÖZLEM KESKİN ÖZKAYA

  5. Prediction of drug-drug interaction by using profile fingerprint vectors and protein similarities

    İlaç-ilaç etkileşimlerini profil parmak izi vektörleri ve protein benzerlikleri kullanarak tahmin etme

    SELMA DERE

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBahçeşehir Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SERKAN AYVAZ