Geri Dön

Bulanık kümeleme algoritmaları kullanılarak beyin MR görüntülerinden MS lezyonlarının ayrıştırılması

Segmentation of MS lesions in brain magnetic resonance images using fuzzy clustering algorithms

  1. Tez No: 332998
  2. Yazar: İPEK TOKER
  3. Danışmanlar: PROF. DR. SEDEF KENT PINAR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Biyomühendislik, Elektrik ve Elektronik Mühendisliği, Bioengineering, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2013
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Biyomedikal Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 99

Özet

Bu çalışmada, manyetik rezonans görüntüleme tekniği ile elde edilmiş beyin görüntülerinden Multipl Skleroz hastalığı sebebiyle oluşan lezyonların kümeleme algoritmaları kullanılarak ayrıştırılması amaçlanmıştır. Bu amaçla, bulanık c-ortalamalar algoritması ile bu algoritmaya farklı bir yaklaşımın uyarlanmasıyla geliştirilmiş olan tip-2 bulanık c-ortalamalar yöntemi BrainWeb veritabanından alınmış yapay MR görüntüleri üzerinde test edilmiştir. Ayrıca, bulanık c-ortalamalar algoritmasının başlangıç değerlerine bağlılığını azaltmak için parçacık sürü optimizasyonu algoritmasından faydalanılmıştır. Bölütleme aşamasında öznitelik olarak T1 ve T2 ağırlıklı yapay MR görüntülerinin gri seviye değerleri kullanılmıştır. Kullanılan algoritmalar için önemli parametrelerin değerleri yapılan denemeler sonucunda belirlenmiştir. Algoritmalara ait kodlar MATLAB kullanılarak yazılmıştır. Bölütleme sonuçları, söz konusu veritabanından alınan hedef görüntülere göre değerlendirilmiş ve tip-2 bulanık c-ortalamalar yaklaşımının üstünlüğü gösterilmiştir.

Özet (Çeviri)

In this study, segmentation of Multiple Sclerosis (MS) lesions in brain magnetic resonance images using clustering algorithms is intended. For this purpose, fuzzy c-means algorithm and type-II fuzzy c-means algorithm which is developed applying a new approach on fuzzy c-means algorithm, are tested using synthetic MRI images. The images are taken from BrainWeb database. In addition, particle swarm optimization algorithm is used to reduce sensitivity of fuzzy c-means algorithm to initial values. In segmentation process, grey level intensities of T1-weighted and T2-weighted MR images are used as features. The values of parameters which are effective on the performance of algorithms are determined using experimental results. Codes of algorithms are implemented using MATLAB. The clustering results are compared with the target image which is presented by BrainWeb database and superiority of type-II fuzzy c-means algorithm for this problem is proven.

Benzer Tezler

  1. Bulanık sınıflandırma ile beyin MR görüntülerinde tümör tespiti

    Tumor detection in MR brain images using fuzzy classification

    ARSLAN ALAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YAŞAR BECERİKLİ

  2. Beyin MR görüntülerinin akıllı yöntemler ile sınıflandırılması, kümelenmesi ve bölütlenmesi

    Classification, clustering and segmentation of brain MR images by intelligent methods

    FARUK ALTUNTAŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. YAŞAR BECERİKLİ

  3. Saklı Markov model tabanlı sınıflandırıcıların geliştirilemesi

    Improvement of hidden Markov model based classifiers

    HARUN UĞUZ

    Doktora

    Türkçe

    Türkçe

    2007

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. AHMET ARSLAN

  4. Integrating fuzzy logic into deep autoencoders for interpretability and clustering

    Yorumlanabilirlik ve öbekleme için bulanık mantığın derin özkodlayıcılara entegre edilmesi

    KUTAY BÖLAT

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DOÇ. DR. TUFAN KUMBASAR

  5. A fuzzy software prototype for spatial phenomena: Case study precipitation distribution

    Mekansal fenomenler için bulanık yazılım prototipi: Yağış dağılımı örnek olayı incelemesi

    TAHSİN ALP YANAR

    Doktora

    İngilizce

    İngilizce

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Jeodezi ve Coğrafi Bilgi Teknolojileri Ana Bilim Dalı

    DOÇ. DR. ZUHAL AKYÜREK