Bulanık kümeleme algoritmaları kullanılarak beyin MR görüntülerinden MS lezyonlarının ayrıştırılması
Segmentation of MS lesions in brain magnetic resonance images using fuzzy clustering algorithms
- Tez No: 332998
- Danışmanlar: PROF. DR. SEDEF KENT PINAR
- Tez Türü: Yüksek Lisans
- Konular: Biyomühendislik, Elektrik ve Elektronik Mühendisliği, Bioengineering, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Biyomedikal Mühendisliği Bilim Dalı
- Sayfa Sayısı: 99
Özet
Bu çalışmada, manyetik rezonans görüntüleme tekniği ile elde edilmiş beyin görüntülerinden Multipl Skleroz hastalığı sebebiyle oluşan lezyonların kümeleme algoritmaları kullanılarak ayrıştırılması amaçlanmıştır. Bu amaçla, bulanık c-ortalamalar algoritması ile bu algoritmaya farklı bir yaklaşımın uyarlanmasıyla geliştirilmiş olan tip-2 bulanık c-ortalamalar yöntemi BrainWeb veritabanından alınmış yapay MR görüntüleri üzerinde test edilmiştir. Ayrıca, bulanık c-ortalamalar algoritmasının başlangıç değerlerine bağlılığını azaltmak için parçacık sürü optimizasyonu algoritmasından faydalanılmıştır. Bölütleme aşamasında öznitelik olarak T1 ve T2 ağırlıklı yapay MR görüntülerinin gri seviye değerleri kullanılmıştır. Kullanılan algoritmalar için önemli parametrelerin değerleri yapılan denemeler sonucunda belirlenmiştir. Algoritmalara ait kodlar MATLAB kullanılarak yazılmıştır. Bölütleme sonuçları, söz konusu veritabanından alınan hedef görüntülere göre değerlendirilmiş ve tip-2 bulanık c-ortalamalar yaklaşımının üstünlüğü gösterilmiştir.
Özet (Çeviri)
In this study, segmentation of Multiple Sclerosis (MS) lesions in brain magnetic resonance images using clustering algorithms is intended. For this purpose, fuzzy c-means algorithm and type-II fuzzy c-means algorithm which is developed applying a new approach on fuzzy c-means algorithm, are tested using synthetic MRI images. The images are taken from BrainWeb database. In addition, particle swarm optimization algorithm is used to reduce sensitivity of fuzzy c-means algorithm to initial values. In segmentation process, grey level intensities of T1-weighted and T2-weighted MR images are used as features. The values of parameters which are effective on the performance of algorithms are determined using experimental results. Codes of algorithms are implemented using MATLAB. The clustering results are compared with the target image which is presented by BrainWeb database and superiority of type-II fuzzy c-means algorithm for this problem is proven.
Benzer Tezler
- Bulanık sınıflandırma ile beyin MR görüntülerinde tümör tespiti
Tumor detection in MR brain images using fuzzy classification
ARSLAN ALAN
Yüksek Lisans
Türkçe
2010
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. YAŞAR BECERİKLİ
- Beyin MR görüntülerinin akıllı yöntemler ile sınıflandırılması, kümelenmesi ve bölütlenmesi
Classification, clustering and segmentation of brain MR images by intelligent methods
FARUK ALTUNTAŞ
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. YAŞAR BECERİKLİ
- Saklı Markov model tabanlı sınıflandırıcıların geliştirilemesi
Improvement of hidden Markov model based classifiers
HARUN UĞUZ
Doktora
Türkçe
2007
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. AHMET ARSLAN
- Integrating fuzzy logic into deep autoencoders for interpretability and clustering
Yorumlanabilirlik ve öbekleme için bulanık mantığın derin özkodlayıcılara entegre edilmesi
KUTAY BÖLAT
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
DOÇ. DR. TUFAN KUMBASAR
- A fuzzy software prototype for spatial phenomena: Case study precipitation distribution
Mekansal fenomenler için bulanık yazılım prototipi: Yağış dağılımı örnek olayı incelemesi
TAHSİN ALP YANAR
Doktora
İngilizce
2010
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiJeodezi ve Coğrafi Bilgi Teknolojileri Ana Bilim Dalı
DOÇ. DR. ZUHAL AKYÜREK