Geri Dön

Inertial sensor fusion for 3D camera tracking

3B kamera takibi için eylemsizlik algılayıcılarının birleştirilmesi

  1. Tez No: 341170
  2. Yazar: NURİ ÖZER
  3. Danışmanlar: DOÇ. DR. ÇİĞDEM EROĞLU ERDEM, PROF. DR. ARİF TANJU ERDEM
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: İngilizce
  9. Üniversite: Bahçeşehir Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 168

Özet

Robotların ve eklenmiş gerçeklik uygulamalarının tıp eğitimi, robotların uzaktan kullanımı, eğlence ve kültürel miras gibi kullanım alanlarının artması ile birlikte, 3B (3 boyutlu) takip sistemlerinin Bilgisayarlı Görü alanında önemi biraz daha artmaktadır. Eklenmiş gerçeklik uygulamalarında gerçeklik hissinin yüksek olması için canlandırma sırasında kullanılan sanal karakterlerin mekan içerisinde doğru bir şekilde hizalanması çok önemlidir. Bunun için 3B takip sisteminin doğruluğu artırılmalıdır. Sadece video verisi kullanan 3B takip sistemleri hızlı hareketin olduğu durumlarda görüntü çok değişken olacağından, yeterince iyi izleme sonuçları vermeyebilirler. Eylemsizlik algılayıcıları ise hızlı hareket olan durumlarda iyi izleme yapabilirler, ancak az hareketin olduğu durumlarda ise ölçüm hatalarının birikmesi nedeniyle iyi çalışmayabilirler. Bu sebeple, hareket takibinin doğruluğunu artırmak için bu tezde eylemsizlik algılayıcılarının verilerinden de yararlanılacaktır. Aynı zamanda bu takip sistemi için mekana herhangi bir cihaz veya işaret yerleştirmeye gerek duyulmamaktadır. 3B hareket takibi video kameralar ve eylemsizlik algılayıcıları kullanılarak yapılmıştır. Hareket takibinin yapılacağı mekanın 3B bilgisi önceden çıkarılmıştır. Kamera verilen gelen verilerle eylemsizlik algılayıcılarından gelen veriler bir döngüsel Bayes kestirimi çerçevesinde birleştirilmiştir. Ayrıca, bu tezde 3B hareket takibi için hareketten yapı çıkarma yöntemi ile döngüsel Bayes süzgeçleme yöntemini birleştiren karma bir süzgeçte geliştirilmiştir. Eylemsizlik algılayıcılarıın sapma modelleri de hareket takibi sırasında göz önüne alınmıştır. Döngüsel Bayes süzgeç ile karma süzgeçin performanslarının karşılaştırılmasının yanında eylemsizlik algılayıcılarından gelen verilerin Bayes veya karma süzgeçte ölçüm yerine kontrol girdisi olrak kullanılmasının takip performansını nasıl etkilediği gözlenmiştir. Simülasyonlar sonuçlarına bakarak eylemsizlik algılayıcılarının 3B hareket takibinde kullanılması daha doğru sonuçlar bulmasını sağlamış, eylemsizlik algıyacılarından gelen verilerin ölçüm veya kontrol girdisi olarak kullanılması performansı neredeyse hiç etkilememesine rağmen süzgeç kullanımdaki karmaşıklığı azaltarak maliyeti düşürdüğü gözlemlenmiştir. Bununla birlikte döngüsel Bayes süzgeç kullanmak karma süzgeç kullanmaya göre her zaman daha iyi sonuçlar verdiği gözlemlenmiştir.

Özet (Çeviri)

3D motion tracking becomes more important in computer vision with increase of robotics and augmented reality's (AR) applicable areas such as medical education, remote robot control, entertainment and cultural heritage. In order to achieve a realistic feeling of immersion, the rendering of the virtual content has to be in alignment with real objects in the video and this requires a high-accuracy 3D tracking. The methods using only camera measurements generally perform well at slow camera motion; however they become less accurate at high velocities and accelerations due to motion blur. Inertial sensors on the other hand measure the derivatives of the camera pose and hence can be employed to improve the tracking performance at high velocities and accelerations, but cannot perform well at slow motion because of the error drift. Therefore, we present a high-accuracy 3D camera tracking method using inertial sensors but not require placing any devices or points on the scene. 3D information of scene where 3D motion tracking is done is previously known. The method consists of an Extended Kalman filter (EKF) that fuses the information from visual and inertial sensors. A hybrid filter combining the Bayesian filter and the direct linear transformation (DLT) is also used instead of EKF. The biases of the inertial sensors are also considered during the motion. In addition to performance comparison of these two filter, the performance of using both or one of accelerometer and gyroscope measurements as control input is compared to using both or one of accelerometer and gyroscope measurements as measurement. It is concluded via simulations that using inertial sensors in 3D camera tracking gives more accurate results and using inertial sensors as measurement or control input does not affect the performance of 3D camera tracking, while providing a lower complexity tracker. Also, EKF always performs better than the hybrid filter in simulations.

Benzer Tezler

  1. Madgwick IMU algoritması kullanılarak, ataletsel ölçü birimi ile oryantasyon analizi

    Orientation analysis with inertial measurement unit by using Madgwick IMU algorithm

    MEHMET FATİH ÇAKMAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SERHAT İKİZOĞLU

  2. İnsan hareketi izleme teknolojilerinin karşılaştırmalı değerlendirmesi

    Comparative assessment of human motion monitoring technologies

    CEMAL FATİH KUYUCU

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ GÖKHAN İNCE

  3. Visual-inertial sensor fusion for 3D urban modeling

    Görsel-ataletsel duyaç tümleştirme kullanılarak şehirlerde 3B modelleme

    SALİM SIRTKAYA

    Doktora

    İngilizce

    İngilizce

    2013

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ABDULLAH AYDIN ALATAN

  4. Comparison and validation of two gait analysis systems including video-based and IMU sensors

    Video tabanlı ve IMU sensörlerini içeren iki yürüyüş analiz sisteminin karşılaştırılması ve doğrulanması

    SANAZ MAGHSOUDI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Biyomühendislikİstanbul Üniversitesi

    Ortopedi ve Travmatoloji Ana Bilim Dalı

    PROF. DR. FUAT BİLGİLİ

  5. Modelling, simulation and testing of artificial neural network augmented kalman filter for ins/gps and magnetometer integration

    Yapay sinir ağları ile genişletilmiş kalman filtresinin bütünleştirilmiş ans/kks ve manyetometre ile modellenmesi, simülasyonu ve test edilmesi

    DOĞAN YILDIZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Makine MühendisliğiOrta Doğu Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERHAN İLHAN KONUKSEVEN

    DR. VOLKAN NALBANTOĞLU