Geri Dön

Yapay sinir ağları eğitiminin gradyen tabanlı ve global arama algoritmaları ile FPGA üzerinde donanımsal gerçeklenmesi

Hardware implementaton of artificial neural network training using gradient based and global search algorithms on FPGA

  1. Tez No: 351988
  2. Yazar: MEHMET ALİ ÇAVUŞLU
  3. Danışmanlar: YRD. DOÇ. DR. FUAT KARAKAYA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: FPGA, Yapay Sinir Ağları, Yapay Sinir Hücresi, Geriye Yayılım Algoritması, Levenberg & Marquardt Algoritması, Parçacık Sürü Optimizasyon Algoritması, Yapay Arı Koloni Algoritması, Kayan Noktalı Sayı, FPGA, Artificial Neural Networks, Artificial Neural Cell, Back Propagation Algorithm, Levenberg & Marquardt Algorithm, Particle Swarm Optimization Algorithm, Artificial Bee Colony Algorithm, Floating Point Number
  7. Yıl: 2013
  8. Dil: Türkçe
  9. Üniversite: Niğde Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 96

Özet

Yapay sinir ağları (YSA), sistem giriş ve çıkışları arasındaki karmaşık ilişkiyi etkili bir şekilde modelleyebilme yeteneği ile bilimsel çalışmalarda yaygın olarak kullanılmaktadır. Güncel çalışmalarda YSA eğitiminde gradyen tabanlı algoritmaların yanında global arama özelliğine sahip algoritmalar da kullanılmaktadır. Bu çalışmada, gradyen tabanlı algoritmalardan geriye yayılım (GY) ve Levenberg & Marquardt (LM) algoritmaları ile sezgisel arama özelliğine sahip algoritmalardan parçacık sürü optimizasyon (PSO) ve yapay arı koloni (YAK) algoritmaları kullanılarak YSA eğitimi FPGA üzerinde donanımsal olarak gerçeklenmiştir. Gerçeklemelerde sağlamış olduğu dinamiklik ve hassasiyetten ötürü IEEE 754 kayan noktalı sayı formatı kullanılmıştır. FPGA üzerinde YSA gerçeklemesinde en kritik aşama olan aktivasyon fonksiyonunun gerçeklenmesinde matematiksel yaklaşımlar tercih edilmiştir. Donanımsal gerçeklemeler dinamik sistem tanıma ve araç plaka bölgesi belirleme problemleri kullanılarak test edilmiştir. Eğitilen YSA'lar eğitim fazında ağa gösterilmeyen giriş-çıkış örnekleri ile test edilmiş ve her örnek için yukarıda bahsi geçen algoritmaların YSA eğitimindeki başarım oranları kıyaslamalı olarak verilmiştir.

Özet (Çeviri)

Artificial neural networks (ANNs) are commonly used in scientific studies due to their ability to effectively model complex relationship between input and output of a system. In recent studies global search algorithms are also utilized in addition to gradient based algorithms in ANN training. In this study, hardware implementation of ANN training on FPGA is realized using gradient based algorithms such as Back Propagation (BP) and Levenberg&Marquardt, and heuristic algorithms such as Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). For implementation, floating point numbers are chosen as number format due to its dynamism and accuracy. Mathematical approachesare preferred for hardware implementation of activation functions, which is the most critical stage of ANN implementation on FPGA. The hardware implementations on FPGA are tested using dynamic system identification and license plate recognition problems. The trained ANNs are tested using input-output data sets which are not used in training and results for each example are given in a comparative manner.

Benzer Tezler

  1. Development of new learning algorithms for spiking neural networks

    Darbeli yapay sinir ağları için yeni öğrenme algoritmalarının geliştirilmesi

    YEŞİM ÖNİZ

    Doktora

    İngilizce

    İngilizce

    2014

    Elektrik ve Elektronik MühendisliğiBoğaziçi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MUSTAFA OKYAY KAYNAK

  2. Dynamic heuristic approach to enhance the performance of few-shot meta-learning

    Az örnekle meta-öğrenmenin performansını artırmak için dinamik heuristik bır yaklaşım

    ÖMER MİRHAN

    Doktora

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar ve Bilişim Mühendisliği Ana Bilim Dalı

    PROF. DR. NUMAN ÇELEBİ

  3. Yapay sinir ağı eğitimi için çoklu evren optimizasyonu ve tavlama benzetimi algoritması ile yeni bir melez meta-sezgisel model önerisi

    A new hybrid meta-heuristic model proposal with multiverse optimization and simulated annealing algorithm for artificial neural network training

    ÖMER YILMAZ

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk Üniversitesi

    Bilişim Teknolojileri Mühendisliği Ana Bilim Dalı

    PROF. DR. ADEM ALPASLAN ALTUN

  4. Metasezgisel Aquila optimizasyon algoritması temelli yapay sinir ağı sınıflandırıcı modeli

    Metaheuristic Aquila optimization algorithm based artificial neural network classifier model

    ŞEYMA HASBOLAT ÜNAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOndokuz Mayıs Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. GÖKHAN KAYHAN

  5. COOT optimizasyon algoritması temelli yapay sinir ağı modeli

    Artificial neural network model based on COOT optimization algorithm

    AYŞENUR ÖZDEN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOndokuz Mayıs Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ İSMAİL İŞERİ