Geri Dön

Identification of facial expressions using artificial neural networks (ANN)

Yapay sinir ağları (YSA) kullanarak yüz ifadelerini tanıma

  1. Tez No: 354506
  2. Yazar: MİNE ALTINAY GÜNLER
  3. Danışmanlar: YRD. DOÇ. DR. HAKAN TORA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: İngilizce
  9. Üniversite: Atılım Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Bölümü
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 76

Özet

Yüz ifadeleri sözsüz iletişimin bir türüdür. Kişinin duygu durumunu barındırırlar. Yüz ifadelerini otomatik olarak analiz etme günümüzde popular bir araştırma alanıdır. Psikoloji, eğitim, cinayet masası, suça eğilim analizi gibi çeşitli alanlarda kişinin zihinsel sinyalleri hakkında ipucu elde etmek için kullanılır. Bu tez çalışması duygu tanıma analizi için yapay sinir ağları (YSA) tabanlı üç değişik yaklaşım önermektedir. İlk olarak, ağaç tabanlı sinir ağları yapısı önerilmiştir. İkinci olarak, duygu sınıflandırılması için gizli katman çıktıları kullanılmıştır. Son olarak, yüz özellikleri tabanlı bir sistem tasarlanmıştır. Önerilen her bir metot Matlab kullanılarak oluşturulmuştur ve her biri gülen, sinirli ve bağıran yüz ifadelerini başarılı bir şekilde tanıyabilmektedir.

Özet (Çeviri)

Facial expressions are a kind of nonverbal communication. They carry the state of emotion of a person. Automatic facial expression identification analysis became popular research area nowadays. It can be used in many areas such that physiology, education, murder squad, analysis of tendency to crime to get a clue about mental signals of a person. This thesis study proposes three different approaches with different methods to identify facial expressions based on artificial neural networks (ANN). Firstly, a tree based neural network structure is proposed. Secondly, hidden layer outputs are used for emotion classification. Finally, a facial features based system is designed. Each proposed methods are implemented by using Matlab and each is capable of identifying smile, angry and scream expressions of a person successfully.

Benzer Tezler

  1. DA4HI: A deep learning framework for facial emotion recognition in affective systems for children with hearing impairments.

    DA4HI: İşitme engelli çocuklar için duyuşsal sistemlerde yüzdeki duyguların tanınması maksadıyla geliştirilen derin öğrenme modeli.

    CEMAL GÜRPINAR

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. HATİCE KÖSE

    PROF. DR. NAFİZ ARICA

  2. Utilization of 3D data in face recognition

    Başlık çevirisi yok

    NESLİ ERDOĞMUŞ

  3. Yapay zeka teknikleri kullanılarak mikro ifadelerin tespiti ve sınıflandırılması

    Detection and classification of microexpressions using artificial intelligence techniques

    MEHMET ZAHİT UZUN

    Doktora

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YÜKSEL ÇELİK

    DOÇ. DR. ERDAL BAŞARAN

  4. An improved transfer learning based siamese network for face recognation

    Yüz tanıma için geliştirilmiş aktarım öğrenme tabanlı sıamese ağı

    DALHM GHALIB HALBOOS AL-SHAMMARI

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSakarya Üniversitesi

    Bilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı

    البروفيسور. دكتور. DEVRİM AKGÜN