Protein etkileşim tahmini için pozitif etiketsiz öğrenme algoritmalarının geliştirilmesi
Improving positive unlabeled learning algorithms for protein interaction prediction
- Tez No: 361071
- Danışmanlar: YRD. DOÇ. DR. MEHMET TAN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: Türkçe
- Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 50
Özet
Protein etkileşim tahmini için ikili sınıflandırmada, mevcut iki adet proteinin negatif (etkileşime girmeyen) olduğunu tespit edebilmek zor bir işlemdir. Bu zorluğun sebeplerinden biri bu sınıflandırmayı yapmaya yardımcı olacak eğitim kümesi için hiçbir zaman etkileşmeyen örnekleri temin etmenin güç olmasıdır. Ayrıca, bir protein çiftinin etkileşmediği ispatlanmış olsa bile, protein etkileşim veri tabanlarında bu negatif örneklere yer verilmez. Bu durum sebebiyle gerçek negatif örnek kullanmayan öğrenme algoritmalarına bir ihtiyaç doğmuştur. Bu çalışmada, yüksek performansları sebebiyle seçilen iki adet pozitif etiketsiz öğrenme algoritması, AGPS ve Roc-SVM için geliştirmeler yapılması hedeflenmiştir. Bu algoritmalara iki adet geliştirme yapılacaktır: algoritmaların sınıflandırma için kullandığı support vector Machines (SVM) sınıflandırıcısı yerine Random Forest sınıflandırıcısını kullanmak (AGPS-RF ve Roc-RF) ve iki algoritmayı birleştirerek sonuçlarını bir oylama sistemine sokmak (Karma Algoritma). Bu geliştirmeler yapıldıktan sonra algoritmalar önceki halleri ile ve yaygın olarak kullanılan iki adet sınıflandırma algoritması (CLR ve ARACNE) ile karşılaştırılarak performansları incelenmiştir. Yapılan karşılaştırmalarda, AGPS-RF, Roc-RF ve Karma Algoritma, SVM kullanan seleflerine göre daha iyi performans vermiştir. CLR ve ARACNE ile yapılan karşılaştırmalarda ise Roc-RF ve Karma Algoritma'nın daha performanslı olduğu görülmüştür.
Özet (Çeviri)
In binary classification for protein interaction prediction, labeling two proteins as negative (not interacting) is a hard task. This problem is caused by the difficulty of obtaining two training samples that would never interact. Furthermore, the protein interaction databases do not include negative samples, even if the samples have been shown to be non-interacting. The aforementioned difficulty in obtaining true negative samples created a need for learning algorithms that does not use negative samples. This study aims to improve upon two well-performing positive unlabeled learning algorithms, AGPS and Roc-SVM for protein interaction prediction. Two extensions to these algorithms is proposed; the first one is to use Random Forests as the classifier instead of support vector Machines (AGPS-RF and Roc-RF) and the second is to combine the results of AGPS and Roc-SVM using a voting system (Hybrid Algorithm). After these two approaches are implemented, the results were compared to the original algorithms as well as two well-known learning algorithms, ARACNE and CLR. In the tests and comparisons, both Random Forest algorithms and the Hybrid algorithm performed well against the original SVM-classified ones. The improved Roc-RF and Hybrid Algorithms also performed well against ARACNE and CLR.
Benzer Tezler
- A computational approach for predicting host specificity of adenoviruses
Adenovirüslerin konak özgüllüğünü tahmin etmede kullanılacak bir hesaplama yöntemi
ONUR CAN KARABULUT
Yüksek Lisans
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMuğla Sıtkı Koçman ÜniversitesiBiyoenformatik Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BARIŞ ETHEM SÜZEK
- Recombinant expression, purification and characterization of TNFR1
TNFR1'in rekombinant üretimi, saflaştırılması ve karakterizasyonu
YAĞMUR ÖZ
Yüksek Lisans
İngilizce
2020
Biyoteknolojiİstanbul Teknik ÜniversitesiMoleküler Biyoloji-Genetik ve Biyoteknoloji Ana Bilim Dalı
PROF. DR. GİZEM DİNLER DOĞANAY
- Critical assessment of protein-protein interaction databases and features towards prediction of interactions
Etkileşim tahmini için protein-protein etkileşim kümelerinin ve niteliklerin detaylı karşılaştırılması
MEHMET CENGİZ ULUBAŞ
Yüksek Lisans
İngilizce
2009
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKoç ÜniversitesiBilgisayar Mühendisliği Bölümü
DOÇ. DR. ATTİLA GÜRSOY
- Yapay zekâ tekniklerinin kullanımıyla protein etkileşimlerinin sekans bilgisine dayalı tahmini
Prediction of protein interactions by using artificial intelligence techniques based on protein sequence data
YUNUS EMRE GÖKTEPE
Doktora
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKonya Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. HALİFE KODAZ
- Predicting novel small inhibitors of SARS-CoV-2: Targeting SARS-CoV-2 spike protein, human ACE2 protein and SARS-CoV-2 NsP16 via molecular docking
SARS-CoV-2 için yeni küçük inhibitör moleküllerin tahmini: Moleküler yanaştırma yöntemiyle SARS-CoV-2 spike proteini, insan ACE2 proteini ve SARS-CoV-2 NsP16 hedeflenmesi
ONUR ÖZER
Yüksek Lisans
İngilizce
2022
Biyolojiİstanbul Teknik ÜniversitesiMoleküler Biyoloji-Genetik ve Biyoteknoloji Ana Bilim Dalı
DOÇ. DR. MERT GÜR
DR. ÖĞR. ÜYESİ SEFER BADAY