Random discriminative projection-based feature selection for computational paralinguistics
Hesaplamasal paralinguistik için rassal ayrımsayıcı izdüşüm tabanlı öznitelik seçimi
- Tez No: 371816
- Danışmanlar: PROF. DR. SADIK FİKRET GÜRGEN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: İngilizce
- Üniversite: Boğaziçi Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 72
Özet
Özet yok.
Özet (Çeviri)
Computational paralinguistics deals with the underlying meaning of the verbal messages. Understanding the meaning of verbal messages provides interpreting spoken content and behaving accordingly like humans. It allows us to develop human like machines. Hence, paralinguistic area is attracting increasing attention for research. Paralinguistic analysis involves extracting features from raw speech data, chunking, selecting relevant features and training the model. In this thesis, the focus is on the feature selection step. Feature selection aims at finding a relevant and necessary set of features to train generalizable models. The main challenge for feature selection methods is the greedy-search nature of them. One major motivation for this study to develop an efficient feature selection technique is the success of a recently developed discriminative projection based feature selection method. Here, the method is enhanced by applying the power of stochasticity to overcome traps in local minimum while reducing the computational complexity. The proposed approach assigns weights both to groups and to features individually in many randomly selected contexts and then combines them for a final ranking. The efficacy of the proposed method is shown in two recent challenge corpora to detect level of depression severity and conflict.
Benzer Tezler
- Hiperspektral görüntülerde spektral ve uzamsal enformasyonun ortaklaşa kullanımı ile sınıflandırılması ve bölütlenmesi
Classification and segmentation of hyperspectral images with joint usage of spectral and spatial information
UĞUR ERGÜL
Yüksek Lisans
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolYıldız Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. GÖKHAN BİLGİN
- Improved security and privacy preservation for biometric hashing
Biyometrik kıyım için arttırılmış güvenlik ve mahremiyet koruması
ÇAĞATAY KARABAT
Doktora
İngilizce
2013
Elektrik ve Elektronik MühendisliğiSabancı ÜniversitesiElektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. HAKAN ERDOĞAN
- Detection and classification of brown marmorated stink bug (Halyomorpha halys) damage in hazelnut using image processing and deep learning techniques
Görüntü işleme ve derin öğrenme teknikleri kullanarak fındıkta kahverengi kokarca (Halyomorpha halys) zararının belirlenmesi ve sınıflandırılması
OMSALMA ALSADIG ADAM GADALLA
Doktora
İngilizce
2023
ZiraatOndokuz Mayıs ÜniversitesiTarım Makineleri ve Teknolojileri Mühendisliği Ana Bilim Dalı
PROF. DR. YEŞİM BENAL ÖZTEKİN
- Deep metric learning applied to crop classification from multi-spectral multi-temporal remote sensing data
Derin metrik öğrenmenin çoklu-zamanlı ve çoklu-bantlı uzaktan algılanmış verilerden tarım ürünü sınıflandırmaya uygulanması
MERVE BOZO
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ZEHRA ÇATALTEPE
- Single-frame and multi-frame super-resolution on remote sensing images via deep learning approaches
Derin öğrenme yaklaşımlarıyla uzaktan algılama görüntülerinde tek çerçeve ve çok çerçeve süper çözünürlük
PEIJUAN WANG
Doktora
İngilizce
2022
İletişim Bilimleriİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. ELİF SERTEL