Geri Dön

Radarla insan hareket sınıflandırma için bilgi-kuramsal tabanlı öznitelik seçimi

Information theory based feature selection for human activity classification with radar

  1. Tez No: 378501
  2. Yazar: BÜRKAN TEKELİ
  3. Danışmanlar: YRD. DOÇ. DR. SEVGİ ZÜBEYDE GÜRBÜZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2014
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 108

Özet

Hareketli bir hedefin parçalarının salınımı ve titreşiminden kaynaklanan mikro-Doppler izleri, sadece araçlar, tanklar, helikopterler, hatta hayvanlar gibi değişik tip hedeflerin sınıflandırılması ve ayırt edilmesi için değil aynı zamanda insan hareket tiplerinin tespiti ve ayırt edilmesi içinde kullanılmaktadır. Bu amaçla mikro-Doppler izlerinin sınıflandırılması ile ilgili yapılan çalışmalarda birçok öznitelik çıkarılarak önerilmiştir. Ancak önerilen özniteliklerin tamamının sınıflandırma işlemi için kullanılması optimum başarım elde edilmesini garantilememektedir. Yüksek bir başarım tüm öznitelikler arasından özniteliklerin bir kısmının seçimi ile oluşturulan bir küme ile sağlanabilir. Bu tez kapsamında insan hareket sınıflandırma problemi için tüm özniteliklerin kullanılması ile elde edilen başarım ve öznitelik seçimi yoluyla oluşturulan kümedeki özniteliklerin başarımları verilerek bu durum gösterilmiştir. Daha belirgin bir şekilde açıklanırsa, karşılıklı bilgi miktarı tabanlı öznitelik seçimi algoritmaları, optimal başarımı veren özniteliklerin karşılaştırılması ve incelenmesi için kullanılmışlardır. Elde edilen sonuçlar, açının bilinmesi durumunda mRMR algoritmasının daha iyi sınıflandırma başarımı verdiğini ve açının bilinmemesi durumunda MIFS-U algoritmasının daha iyi çalıştığını göstermektedir. Öznitelik seçimi kullanıldığı zaman başarım tüm özniteliklerin kullanılması durumuna göre %1.1 artmaktadır. Bu tez kapsamında yapılan çalışma değişen çalışma durumlarında uyarlanabilen öznitelik seçimi için bir temel sağlamaktadır.

Özet (Çeviri)

The micro-Doppler signatures resulting from vibration or rotation of parts of a moving target can be used to not just classify different targets like vehicles, tanks, helicopters, or even animals, but also to classify and recognize different activities. For this purpose, a plethora of features have been extracted and proposed in the literature for classification of micro-Doppler signatures. Yet, use of all features does not guarantee the optimal classification performance. A high classification performance or success rate can be better obtained using a subset of features, which are selected among all possible features. In this thesis, this situation is demonstrated by comparing results on classification performance obtained with not only a selected subset of features, but also using all features for human activity classification. More specifically, information theory based feature selection algorithms are examined and compared for selecting features having optimal classification performance. Feature selection is considered for changing radar-target geometries aspect angle as well. Results Show that when the aspect angle is known mRMR algorithm yields higher correct classification rates, while for unknown angles MIFS-U algorithm performs better. When feature selection is used %1,1 improvement is achived over when all features are used. Work provides basis for adaptive selection of features under varying operational conditions.

Benzer Tezler

  1. Analysis of signal processing algorithms for detection of human vital signs using uwb radar

    Hayati bulguların geniş bantlı radar sistemleri ile tespitinde kullanılan sinyal işleme algoritmalarının analizi

    CANSU EREN

    Doktora

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    PROF. DR. MESUT KARTAL

    PROF. DR. SAEİD KARAMZADEH

  2. Unmanned air vehicle routing with multiple objectives

    Çok amaçlı insansız hava aracı rotalama

    ERDİ DAŞDEMİR

    Doktora

    İngilizce

    İngilizce

    2021

    Endüstri ve Endüstri MühendisliğiOrta Doğu Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. MERAL AZİZOĞLU

    DR. ÖĞR. ÜYESİ DİCLEHAN TEZCANER ÖZTÜRK

  3. Functional safety analysis for advanced emergency braking systems

    İleri acil frenleme sistemleri için fonksiyonel emniyet analizi

    SEMİH UZUN

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Otomasyon Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ İLKER ÜSTOĞLU

  4. Hayati sinyallerin temassız tespiti için bir biyoradar sisteminin geliştirilmesi

    Development of a bio-radar system for non-contact detection of vital signs

    İBRAHİM ŞEFLEK

    Doktora

    Türkçe

    Türkçe

    2021

    Elektrik ve Elektronik MühendisliğiKonya Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ERCAN YALDIZ

  5. Detection improvement of hidden humans respiratory using UWB radar

    UWB radar ile duvar arkasında gizli insanın teneffüsünün algılama yöntemlerinin iyileştirmesi

    SAEID KARAMZADEH

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    İletişim Sistemleri Ana Bilim Dalı

    DOÇ. DR. MESUT KARTAL