Geri Dön

Kolektif sınıflandırma yöntemleri için öznitelik ve düğüm seçimi

Feature and node selection for collective classification

  1. Tez No: 384860
  2. Yazar: BARIŞ ŞENLİOL
  3. Danışmanlar: DOÇ. DR. ZEHRA ÇATALTEPE
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 111

Özet

Bu çalışmada, kolektif sınıflandırma yöntemlerinin öznitelik ve/veya düğüm seçme yöntemleri ile birlikte kullanılmasının sınıflandırma performanslarında oluşturacağı değişim normal ve özniteliksel olarak zenginleştirilmiş ağ yapısına sahip veri kümeleri üzerinde araştırılmıştır. Öznitelik seçme yöntemleri olarak mRMR ve geliştirilen FCBF# yöntemi kullanılırken, düğüm seçmek için derece ve komşuluk tutarlılık oranı gibi yeni kıstaslar önerilmiştir. Yapılan deneyler sonucunda öznitelik ve düğüm seçme yöntemlerinin kullanılmasının homofili ve otokorelasyonu arttırdığı, bu nedenle de veri kümelerinden alınan doğruluk performansında iyileşme sağladığı gözlenmiştir. Öznitelik seçme yöntemleri sadece gürültü veri kümelerinde değil gürültü olmadığı durumlarda bile belirgin performans artışlarına neden olurken, düğüm seçme yöntemlerinin komşuluk sayısı çok olduğu durumlarda oluşan gürültülü ilişkilerden veri kümesini kurtararak çok az sayıda düğüm seçildiği durumlarda bile performansı arttırdığı görülmüştür. Ayrıca geliştirilen öznitelik zenginleştirme yönteminin içerik tabanlı sınıflandırıcıların performanslarını kolektif sınıflandırma yöntemlerinin performanslarına yakınlaştırdığı hatta bazı deneylerde geçtiği gözlenmiştir.

Özet (Çeviri)

In this study, effects of using feature and node selection methods are examined with collective classification algorithms on network data with normal and enriched content to show how much improvement can be made on these classification method?s performances. mRMR and proposed FCBF# methods are used for feature selection while for node selection, some new approaches, such as degree based, neighborhood consistency, are proposed and their results were compared. Experiments showed that using feature and node selection methods on datasets with network structure increases homophily and autocorrelation therefore performances of collective classification algorithms can be increased using selection methods. Feature selection methods improve classification results significantly not only with noisy features also with non-noisy content information. In network structures with too many noisy links, node selection methods decrease the noise by eliminating noisy nodes and even when using low number of nodes, an improvement on performance of classification is achieved. In addition, it is shown that proposed feature enrichment method increases content only classification performances and makes them perform as much as collective classification algorithms.

Benzer Tezler

  1. Ağ verisi üzerinde ilgili ve rastgele alt uzaylar seçerek birlikte öğrenme

    Relevant and random subspaces for co-training in networked data

    KADRİYE BAĞLIOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ZEHRA ÇATALTEPE

  2. Sayısal görüntülerin içine gizlenen verilerin derin öğrenme tabanlı tespit edilmesi

    Deep learning based detection of hidden data in digital images

    MURAT UTKU KABASAKALOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSivas Cumhuriyet Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. RUKİYE KARAKIŞ

  3. Improving collective classification by incorporating directed links, feature enrichment and classifier combination

    Yönlü bağlantılar, öznitelik zenginleştirme ve sınıflandırıcı birleştirme ıle kolektif sınıflandırma başarımının iyileştirilmesi

    ABDULLAH SÖNMEZ

    Doktora

    İngilizce

    İngilizce

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ZEHRA ÇATALTEPE

  4. State-of-mind classification from unstructured texts using statistical features and lexical network features

    İstatistiksel öznitelikler ve sözcüksel ağ özniteliklerini kullanarak, formatsız metinlerde düşünce yapısı sınıflandırılması

    ULYA BAYRAM

    Doktora

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversity of Cincinnati

    Elektrik-Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. JOHN PESTIAN

  5. Kolektif makine öğrenmesi tabanlı ağ saldırı tespiti

    Collective machine learning based network intrusion detection

    ŞURA EMANET

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÖNDER DEMİR

    DR. ÖĞR. ÜYESİ GÖZDE KARATAŞ BAYDOĞMUŞ