Geri Dön

Zamana bağlı trafik akışının modellenmesi ve dinamik yöneltme

Başlık çevirisi mevcut değil.

  1. Tez No: 39364
  2. Yazar: NECMETTİN ÇEKMECE
  3. Danışmanlar: PROF.DR. GÜNSEL DURUSOY
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1992
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 60

Özet

ÖZET Yeni hat bağlaşmalı sistemler klasik elektromekanik merkezlere göre trafiği düzenlemede daha büyük esneklik sağlar. Bunun nedeni on-line veri isleme, trafik ölçmelerinin çeşitliliği ve tekrar programlanabilen trafik kontrolüdür. Son yıllarda zamana bağlı trafik akısı ve dinamik yöneltme konusunda bir çok çalışma yapılmaktadır. Yeni kontrol yeteneklerine uygun trafik modellerinin eksikliği, trafik mühendislerini daha iyi trafik modelleri oluşturmaya yöneltmiştir. Bu tezde, 10 sn gibi kısa çevrim uzunluklarında trafik ölçmelerini güncelleştiren ve onları şebekenin anlık yükünü dengeleyecek şekilde trafiğin güzergahını tekrar belirlemede kullanılan modeller çıkartılmıştır. - II

Özet (Çeviri)

SUMMARY TIME - DEPENDENT TRAFFIC FLOW AND DYNAMIC ROUTING Several meanings can be assigned to the notion of time-dependent traffic. They can be clarified by- consider an infinite size trunk group with offered traffic p(t), arrival intensity A(t), and mean holding time 1/u : ji(t) = A(t)/u. In the stationary offered traffic, when calls arrive or are terminated instantaneous changes of the number of trunks busy are observed. The observation time scala in that case must be of order of 1 /A - In the stationary system, the mean and variance of number of trunks busy remain constant. Also in nonstationary offered traffic, the arrival intensity X depends on time: A = A(t), instantaneous state of trunk group can be observed. However, in this case the mean number in the system also evolves in time. Two different situations are possible : (a) change in offered traffic is abrubt ; (b) offered traffic changes slowly. The first situation is illustrated in Fig. 1. It is assume that the traffic starts to be forwarded to the empty system with fixed rate A. In this case the mean number in the system evolves on the time scale of order of 1/u, as contrasted to the time scale 1/uof intantaneous traffic fluctuations. -Ill-TRAFFIC Offered Traffic Mean Number Of Trunks Busy Intantaneoua Number Of Trunks Buay TIME Fig. Traffic Fluctuations In Fig. 2 more realistic patterns of changes in offered traffic are shown. There are two cases: (a) dynamic traffic flow, and (b) quasi-stationary traffic flow. The traffic flow is dynamic if the offered traffic changes so quicly that there is a significant phase shift between the peaks of mean offered traffic and the mean number of trunks busy, it is seen in Fig. 2a. The traffic flow is quasi-stationary if that phase shift is not observed, Fig. 2b. Traffic Traffic Offered Traffic if ^Carried Traffic (a) Fig. 2. Time Offered Traffic Carried Traffic Cb) Time a) Dynamic Traffic Flow b) Quasi-stationary Traffic Flow -IV-This situations can be related to traffic measurements. In modern SPO switching exchanges the following on-line measurements can be taken on each trunk group :. x(tn): number of trunks busy at time tn. ? Um(t“) : number of calls connected between tn-i and t”. Uout(tn): number of calls terminated between tn-x and t“ At = t”-tn-i is the measuring cycle length the obvious conservation equation which hold3 both for the stationary and non-stationary traffic is : x(t“-i> = x(t”> +Uj.» - Em(t)]a (3) where Pu(t) is the blocking probability on the primary group and a(t) is the offered traffic (the parameter of the nonstationary poisson process). M(t,2) is the second factorial moment for the number of busy circuits in the overflow group. Calculation of m(t) using (2) is impossible as no exact formula is yet known for PN(t) with a=a(t). However, for a=c, a constant, exact PN(t) can be derived. Conseguently computation of v(t) using (3) is also a problem, but with the added complication in the form of M(t,2). Computation of M(t,2) involves the solution of (N+l) partial differential eguations ; not an easy task, especially when N is large, as the case in real-life systems. It is also assumed that the expectation of the holding times is constant and is normalized to one. For the case when this expectation is time-dependent, rescaling of the time-axis using a simple transformation enable the theory developed for unit mean holding time to be used. Next, the models A,B and C are designed so as to meet reguirement of on-line traffic measurements and control in modern SPC switching centers. The model A for random variable yn+i is obtained as follows. yn+± = a^Xn + bi'Un+i + W“+i (4) Where W”*i denotes a noise having the zero mean EE W^-m ] =0 and the coefficients ai and bx are given by 1 at = -El - exp(-T)] (5a) 1 1 bi = -El - ? El-exp(-T) ]> (5b) -VI-The model B for random variable x“+i is obtained x”*i = aa-x» + ba-U“+i + V”*i (6) The coefficients aa and ba are defined aa follows aa = exp(-T) (7a) 1 ba = -[1 - exp(-T)] (7b) T Thus, the model B has a linear structure as well as and differs from the model A in coefficients only. Model B adds little conceptually as companed to model A. Finally, the model C, model M(y“+l,y”,U“,U”+i ), has the form y«*i = a3-yn + c3-U“ + ba-U”+ı + S"+* (8) where a3 = aa ( 9a ) c3 = b3-ai - aa-bi (9b) b3 = tu (9c) ?VII-

Benzer Tezler

  1. Multi-agent based large scale traffic flow simulation of intelligent transportation systems

    Akıllı taşıt sistemlerinde trafik akışının çoklu ajan yaklaşımıyla büyük ölçekte benzetimi

    OĞUZ ALİ EKİNCİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2013

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. PINAR BOYRAZ

  2. Ayrık olaylı sistemlerin petri ağı ile modellenmesi

    Modelling of discrete event systems by petri net

    KADİR ÇELİKMIH

    Yüksek Lisans

    Türkçe

    Türkçe

    2002

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Kontrol ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SALMAN KURTULAN

  3. Sinyalize kavşaklarda gecikme modellemesi

    Delay modelling at signalized intersections

    EKİNHAN ERİŞKİN

    Doktora

    Türkçe

    Türkçe

    2019

    TrafikSüleyman Demirel Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. SERDAL TERZİ

    PROF. DR. HALİM CEYLAN

  4. Real-time crash risk analysis using deep learning

    Derin öğrenmeyle gerçek zamanlı kaza risk analizi

    SAEID MORADI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ OSMAN ATAHAN

  5. Nonlinear dynamics of the Black sea ecosystem and its response to anthropogenic and climate variations

    Karadeniz ekosisteminin doğrusal olmayan dinamikleri ve antropojenik ve iklimsel değişkenlere olan tepkisi

    EKİN AKOĞLU

    Doktora

    İngilizce

    İngilizce

    2013

    Deniz BilimleriOrta Doğu Teknik Üniversitesi

    Deniz Biyolojisi ve Balıkçılık Ana Bilim Dalı

    YRD. DOÇ. DR. BARIŞ SALİHOĞLU